Open Access
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 3
Number of page(s) 8
DOI https://doi.org/10.1051/mfreview/2014002
Published online 05 May 2014
  1. J.L. Movilla, J. Planelles, Off-centering of hydrogenic impurities in quantum dots, Phys. Rev. B 71 (2005) 075319. [CrossRef]
  2. B. Gülveren, Ü. Atav, M. Sahin, M. Tomak, A parabolic quantum dot with N electrons and an impurity, Physica E 30 (2005) 143–149. [CrossRef]
  3. E. Räsänen, J. Könemann, R.J. Puska, M.J. Haug, R.M. Nieminen, Impurity effects in quantum dots: toward quantitative modeling, Phys. Rev. B 70 (2004) 115308. [CrossRef]
  4. M. Aichinger, S.A. Chin, E. Krotscheck, E. Räsänen, Effects of geometry and impurities on quantum rings in magnetic fields, Phys. Rev. B 73 (2006) 195310. [CrossRef]
  5. W. Xie, Binding energy of an off-center hydrogenic donor in a spherical Gaussian quantum dot, Physica B 403 (2008) 2828–2831. [CrossRef]
  6. F.J. Betancur, J. Sierra-Ortega, R.A. Escorcia, J.D. González, I.D. Mikhailov, Density of impurity states in doped spherical quantum dots, Physica E 23 (2004) 102–107. [CrossRef]
  7. F.J. Betancur, I.D. Mikhailov, L.E. Oliveira, Shallow donor states in GaAs − (Ga, Al)As quantum dots with different potential shapes, J. Phys. D: Appl. Phys. 31 (1998) 3391–3396. [CrossRef]
  8. U. Yesilgul, S. Sakiroğlu, E. Kasapoglu, H. Sari, I. Sökmen, Hydrogenic impurities in quantum dots under intense high frequency laser field, Physica B 406 (2011) 1441–1444. [CrossRef]
  9. H. Taş, M. Şahin, The electronic properties of core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity, J. Appl. Phys. 111 (2012) 083702. [CrossRef]
  10. S.-S. Li, J.-B. Xia, Binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot: quantum confinement and Stark effects, J. Appl. Phys. 101 (2007) 093716. [CrossRef]
  11. E. Kasapoglu, H. Sari, I. Sökmen, Density of impurity states of hydrogenic impurities in an inverse parabolic quantum well under the magnetic field, Physica B 392 (2007) 213–216. [CrossRef]
  12. S. Akgŭl, M. Şahin, K. Köksal, A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement, J. Lumin. 132 (2012) 1705–1713. [CrossRef]
  13. R. Khordad, Hydrogenic donor impurity in a cubic quantum dot: effect of position-dependent effective mass, Eur. Phys. J. B 85 (2012) 114. [CrossRef] [EDP Sciences]
  14. M. Cristea, E.C. Niculescu, Hydrogenic impurity states in CdSe/ZnS and ZnS/Cdse core-shell nanodots with dielectric mismatch, Eur. Phys. J. B 85 (2012) 191. [CrossRef] [EDP Sciences]
  15. W. Xie, Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots, Physica B 403 (2008) 4319–4322. [CrossRef]
  16. W. Xie, Impurity effects on optical property of a spherical quantum dot in the presence of an electric field, Physica B 405 (2010) 3436–3440. [CrossRef]
  17. W. Xie, Nonlinear optical properties of a hydrogenic donor quantum dot, Phys. Lett. A 372 (2008) 5498–5500. [CrossRef]
  18. W. Xie, Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential, Superlattices Microstruct. 48 (2010) 239–247. [CrossRef]
  19. A.J. Peter, Polarizabilities of shallow donors in spherical quantum dots with parabolic confinement, Phys. Lett. A 355 (2006) 59–62. [CrossRef]
  20. K.M. Kumar, A.J. Peter, C.W. Lee, Optical properties of a hydrogenic impurity in a confined Zn1-xCdxSe/ZnSe spherical quantum dot, Superlattices Microstruct. 51 (2012) 184–193. [CrossRef]
  21. R. Khordad, Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove GaAs/Ga1-xAlxAs quantum wire, Eur. Phys. J. B 78 (2010) 399–404. [CrossRef] [EDP Sciences]
  22. S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, J. Phys.: Cond. Matter 19 (2007) 395024. [CrossRef]
  23. I. Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity, J. Appl. Phys. 103 (2008) 073512. [CrossRef]
  24. I. Karabulut, S. Baskoutas, Second and third harmonic generation susceptibilities of spherical quantum dots: effects of impurities, electric field and size, J. Comput. Theor. Nanosci. 6 (2009) 153–156. [CrossRef]
  25. B. Çakir, Y. Yakar, A. Özmen, M. Özgür Sezer, M. Şahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct. 47 (2010) 556–566. [CrossRef]
  26. Y. Yakar, B. Çakir, A. Özmen, Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential, Opt. Commun. 283 (2010) 1795–1800. [CrossRef]
  27. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section, J. Lumin. 143 (2013) 304–313. [CrossRef]
  28. S. Baskoutas, E. Paspalakis, A.F. Terzis, Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots, Phys. Rev. B 74 (2006) 153306. [CrossRef]
  29. C. Xia, Z. Zeng, S. Wei, Electric field effects on optical properties in zinc-blende InGaN/GaN quantum dot, J. Lumin. 131 (2011) 623–627. [CrossRef]
  30. M. Şahin, K. Köksal, The linear optical properties of a multi-shell spherical quantum dot of a parabolic confinement for cases with and without a hydrogenic impurity, Semicond. Sci. Technol. 27 (2012) 125011. [CrossRef]
  31. E. Paspalakis, C. Simserides, S. Baskoutas, A.F. Terzis, Electromagnetically induced population transfer between two quantum well subbands, Physica E 40 (2008) 1301–1304. [CrossRef]
  32. E. Paspalakis, A. Kalini, A.F. Terzis, Local field effects in excitonic population transfer in a driven quantum dot system, Phys. Rev. B 73 (2006) 073305. [CrossRef]
  33. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Electron-hole transitions in self-assembled InAs/GaAs quantum dots: effects of applied magnetic fields and hydrostatic pressure, Microelectron. J. 36 (2005) 231–233. [CrossRef]
  34. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots, J. Phys.: Cond. Matter 18 (2006) 1877–1884. [CrossRef]
  35. E. Paspalakis, A.F. Terzis, Proceedings of the 5th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March 12–14, 2006.
  36. H.K. Zhao, Shot noise in the hybrid systems with a quantum dot coupled to normal and superconducting leads, Phys. Lett. A 299 (2002) 262–270. [CrossRef]
  37. N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, S. Amighetti, P. Frigeri, Low frequency noise of GaAs Schottky diodes with embedded InAs quantum layer and self-assembled quantum dots, J. Appl. Phys. 93 (2003) 3990–3994. [CrossRef]
  38. N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, R. Mosca, Investigation of single electron traps induced by InAs quantum dots embedded in GaAs layer using the low-frequency noise technique, J. Appl. Phys. 96 (2004) 5735–5739. [CrossRef]
  39. M. Pioro-Ladriêre, J.H. Davies, A.R. Long, A.S. Sachrajda, L. Gaudreau, P. Zawadzki, J. Lapointe, J. Gupta, Z. Wasilewski, S. Studenikin, Origin of switching noise in GaAs/AlxGa1-xAs lateral gated devices, Phys. Rev. B 72 (2005) 115331. [CrossRef]
  40. P. Yuan, O. Baklenov, H. Nie, A.L. Holmes Jr., B.G. Streetman, J.C. Campbell, High-speed and low-noise, IEEE J. Select. Top. Quantum Electron. 6 (2000) 422–425. [CrossRef]
  41. H.V. Asriyan, F.V. Gasparyan, V.M. Aroutiounian, S.V. Melkonyan, P. Soukiassian, Low-frequency noise in non-homogeneously doped semiconductor, Sens. Actuators A 113 (2004) 338–343. [CrossRef]
  42. Z. Chabola, A. Ibrahim, Noise and scanning by local illumination as reliability estimation for silicon solar cells, Fluc. Noise Lett. 1 (2001) L21–L26. [CrossRef]
  43. J.I. Lee, H.D. Nom, W.J. Choi, B.Y. Yu, J.D. Song, S.C. Hong, S.K. Noh, A. Chovet, Low frequency noise in GaAs structures with embedded In(Ga)As quantum dots, Curr. Appl. Phys. 6 (2006) 1024–1029. [CrossRef]
  44. S. Pal, S.S. Sinha, J. Ganguly, M. Ghosh, Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: interplay with external field, Chem. Phys. 426 (2013) 54–58. [CrossRef]
  45. J.M. Sancho, M.S. Miguel, S.L. Katz, J.D. Gunton, Analytical and numerical studies of multiplicative noise, Phys. Rev. A 26 (1982) 1589–1609. [CrossRef]
  46. L. Jacak, P. Hawrylak, A. Wojos, Quantum Dots, Springer-Verlag, Berlin, 1998. [CrossRef]
  47. T. Chakraborty, Quantum Dots – a survey of the properties of artificial atoms, Elsevier, Amsterdam, 1999.
  48. S. Baskoutas, A.F. Terzis, E. Voutsinas, Binding energy of donor states in a quantum dot with parabolic confinement, J. Comput. Theor. Nanosci. 1 (2004) 317–321. [CrossRef]
  49. V. Halonen, P. Hyvönen, P. Pietiläinen, T. Chakraborty, Effects of scattering centers on the energy spectrum of a quantum dot, Phys. Rev. B 53 (1996) 6971–6974. [CrossRef]
  50. V. Halonen, P. Pietilinen, T. Chakraborty, Optical-absorption spectra of quantum dots and rings with a repulsive scattering centre, Europhys. Lett. 33 (1996) 337–382. [CrossRef]
  51. J. Adamowski, A. Kwaśniowski, B. Szafran, LO-phonon-induced screening of electron-electron interaction in D centres and quantum dots, J. Phys: Cond. Matter 17 (2005) 4489–4500. [CrossRef]
  52. S. Bednarek, B. Szafran, K. Lis, J. Adamowski, Modeling of electronic properties of electrostatic quantum dots, Phys. Rev. B 68 (2003) 155333. [CrossRef]
  53. B. Szafran, S. Bednarek, J. Adamowski, Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots, Phys. Rev. B 64 (2001) 125301. [CrossRef]
  54. A. Gharaati, R. Khordad, A new confinement potential in spherical quantum dots: modified Gaussian potential, Superlattices Microstruct. 48 (2010) 276–287. [CrossRef]
  55. J. García-Ojalvo, J.M. Sancho, Noise in spatially extended systems, Springer, New York, USA, 1999. [CrossRef]
  56. E. Sánchez, M.A. Matías, V. Pérez-Muñuzuri, Analysis of synchronization of chaotic systems by noise: an experimental study, Phys. Rev. E 56 (1997) 4068–4071. [CrossRef]
  57. V. Pérez-Muñuzuri, M.N. Lorenzo, Experimental improvement of chaotic synchronization due to multiplicative time-correlated Gaussian noise, Int. J. Bifurc. Chaos 09 (1999) 2321–2327. [CrossRef]