Open Access
Manufacturing Rev.
Volume 1, 2014
Article Number 7
Number of page(s) 16
Published online 12 August 2014
  1. R.W. Ivester, et al., Assessment of machining models: Progress report, Mach. Sci. Technol. 4 (2000) 511–538. [CrossRef]
  2. J. Leopold, Proceeding’s of the 3rd Int. Workshop on Modelling of Machining Operations, Sydney, 2000.
  3. H. Weber, T.N. Loladze, Grundlagen des Spanens, VEB Verlag Technik, Berlin, 1986.
  4. I. Time, Soprotivlenie Metallov i Dereva Rezanyu, St. Petersburg, 1870.
  5. M.W. Merchant, Mechanics of metal cutting process. I. Orthogonal cutting and a type 2 chip, J. Appl. Phys. 16 (1945) 267–275. [CrossRef]
  6. H. Tresca, Mémoire sur le rabotage des métaux, Paris, 1877.
  7. A. Mallock, The action of cutting tools, Proc. Roy. Soc. London 33 (1881) 127–139. [CrossRef]
  8. K.A. Svorykin, Rabota i Usilie Neobkhodimyya dlya Oteleniiya Metallichcskikh Struzhek, Moscow, 1883.
  9. K. Zuse,, 1938.
  10. O.C. Zienkiewicz, Y.K. Cheung, The Finite Element Method in Structural Mechanics, McGraw-Hill, London, 1967.
  11. H. Weber, et al., Wiss. Schriftenreihe der TH Karl-Marx-Stadt, 1986, 11, ISSN 0323–6374.
  12. J. Leopold, U. Semmler, K. Hoyer, Applicability, robustness and stability of the Finite Element analysis in metal cutting operations, Proc. CIRP Workshop on Modelling of Machining, Nantes, 1999.
  13. J. Leopold, Wiss. Schriftenreihe der TH Karl-Marx-Stadt, 1, 1980, ISSN 0323-6374.
  14. H. Weber, J. Leopold, Wiss. Schriftenreihe der TH Karl-Marx-Stadt, 1981, ISSN 0323-6374.
  15. H. Weber, J. Leopold, Acta Technica Academia Scientiarum Hungaricae 86 (1978) 287–300.
  16. G.R. Johnson, W.H. Cook, Proc. of the 7th International Symposium on Ballistics, Netherlands, 1983, pp. 541–547.
  17. F.J. Zerilli, R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys. 61 (1987) 1816–1825. [CrossRef]
  18. E. Usui, K. Hoshi, Slip-line fields in metal machining which involve centered fans, Proc. of Int. Production Engineering Research Conference, Pittsburgh, ASME, 1963, pp. 61–71.
  19. P.J. Arrazola, T. Özel, Investigations on the effects of friction modeling in finite element simulation of machining, Int. J. Mech. Sci. 52 (2010) 31–42. [CrossRef]
  20. P.J. Arrazola, et al., Recent advances in modelling of metal machining processes, CIRP Ann. – Manuf. Technol., 2013.
  22. J. Leopold, et al., 8th Int. Workshop on Computational Mechanics of Materials, Stuttgart, October, 1998, pp. 8–9.
  23. J. Leopold, M. Meisel, 9th Int. Workshop Computational Mechanics and Computer Aided Design of Materials, Berlin, October, 1999, pp. 4–5.
  24. J. Leopold, M. Meisel, Comput. Mater. Sci. 19 (2000) 205–212. [CrossRef]
  25. J. Leopold, et al., Surf. Coat. Technol. 142–144 (2001) 916–922. [CrossRef]
  26. J. Leopold, M. Meisel, Report on HPS-CSS (HPS-CSS has been supported by the ESPRIT HPCN programme from the European Commission), 2001 (unpublished).
  27. H. Oosterling, et al., Low friction, M0S2-composite coated cutting tools for dry, high speed machining of steel; LoFriCo Final technical report – BRST-CT98-5361, 2001 (unpublished).
  28. J. Leopold, Mechanical and thermal behaviour of coating-substrate-systems investigated with parallel FEM, Proc. Int. Conf. on Metallurgical Coatings and Thin Films – ICMCTF 2002, San Diego/USA, April 22–26, 2002.
  29. L.C. Cho, C. Abhijit, A boundary element method analysis of the thermal aspects of metal cutting processes, Trans. ASME, J. Eng. Ind. 113 (1991) 311–319.
  30. E.P. Stephan, Coupling of boundary methods and finite element methods, E. Stein, R. de Borst, T.J.R. Hughes (Eds.), Encyclopedia of Computational Mechanics, Chapter 13: Fundamentals, Vol. 1, John Wiley & Sons, 2004.
  31. J. Kuhnert, A. Mattes, J. Leopold, Internal report, FhG IWU; FhG ITWS and TU Berlin, 2005.
  32. J. Kuhnert, A. Tramecon, P. Ullrich, Proc. of the EUROPAM Conf., 2000.
  33. S.S. Akarca, W.J. Altenhof, A.T. Alpas, Proceedings of the 10th International LS-DYNA Users Conference, 2008.
  34. E. Uhlmann, et al., Proc. of the CIRP Conf. on Modelling of Machining Operations, Donostia-San Sebastian, pp. 145–151 (2009).
  35. V. Gyliene, V. Ostasevicus, M. Ubartas, Proc. of the 9th European LS-DYNA Conf. 2013 and Proceedings of the 12th CIRP Conference on Modelling of Machining Operations, 145–151, 2009.
  36. C. Espinosa, et al., Proc. of the 10th Int. LS-DYNA Users Conference, 2008.
  37. N. Ikawa, et al., Ann. CIRP, 40 (1991) 551–554. [CrossRef]
  38. S. Shimada, et al., Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation, Ann. CIRP 42 (1993) 91–94. [CrossRef]
  39. R. Rentsch, I. Inasaki, Ann. CIRP 44 (1995) 295–298. [CrossRef]
  40. H. Tanaka, S. Shimada, L. Anthony, Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation, Ann. CIRP 56 (2007) 53–56. [CrossRef]
  41. J. Leopold, Werkzeuge für die Hochgeschwindigkeitsbearbeitung, HANSER, 1999.
  42. J. Leopold, et al., Fliehkraftverhalten von Feinbohrwerkzeugen bei hohen Drehzahlen, VDI-Z III (1996) 48–50.
  43. J. Leopold, et al., Festigkeits- und Verformungsanalyse von Werkzeugen für die Hochgeschwindigkeitsbearbeitung, DIMA 12 (1997) 33–39.
  44. J. Leopold, G. Schmidt, A. Kieninger, FEM-Analyse modular aufgebauter HSC-Werkzeuge mit 3-D einstellbaren Schneiden, DIMA 3 (2000).
  48. D.A. Dornfeld, S.L. Ko, A study on burr formation mechanism, Trans. ASME. J. Eng. Mat. Technol. 113 (1991) 75–87. [CrossRef]
  49. J. Leopold, Prediction and verification of models of burr formation, Int. J. Mater. Product Technol. 35 (2009) 89–117. [CrossRef]
  50. A. Freitag, C. Sohrmann, J. Leopold, Simulation of burr formation, Proc. of the 8th CIRP Int. Workshop on Modeling and Machining Operations (2005) 641–650.
  51. A. Stoll, J. Leopold, R. Neugebauer, Hybrid methods for analysing burr formation in 2D-orthogonal cutting, Proc. of the 9th CIRP Int. Workshop on Modelling of Machining Operations, Bled, Slovenia, May 11–12, 2006.
  52. J. Leopold, G. Schmidt, K. Hoyer, A. Stoll, Modelling and simulation of burr formation – State-of-the-art and future trends, Proc. of the 8th CIRP Int. Workshop on Modelling of Machining Operations, Chemnitz, Germany, May 11–12, 2005.
  53. J. Regel, A. Stoll, J. Leopold, Numerical analysis of crack propagation during the burr formation process of metals, Int. J. Machining and Machinability of Materials, 54–68.
  54. A. Stoll, N. Ahmed, A.V. Mitrofanov, V. Silberschmidt, J. Leopold, Influence of ultrasonically assisted cutting on burr formation, Proc. of the 9th CIRP Int. Workshop on Modelling of Machining Operations, Bled, Slovenia, May 11–12, 2006.
  55. M. Dix, R. Leopold, Investigations on the influence of local material properties of burr formation, Proc. of the 10th CIRP Int. Workshop on Modeling of Machining Operations, Reggio Calabria, Italy, August 27–28, 2007.
  56. J. Leopold, A. Mucha, Non-stick coating for clean manufacturing – cleanability in high-performance cutting, Proc. of the Conf. NANOFAIR, Karlsruhe, 2006.
  57. J. Leopold, R. Neugebauer, M. Löffler, M. Schwenck, P. Hänle, Influence of coating-substrate-systems on chip and burr formation in precision manufacturing, Proc. IMechE Part B: J. Eng. Manuf., 219 (2005) 1–8.
  58. J. Leopold, T. Matsumura, Modelling of burr formation of coated-cutting tools for clean manufacturing, Proc. of the 5th Int. Conf. on Leading Edge Manufacturing in 21st Century – LEM21, Osaka, 2009.
  59. T. Matsumura, J. Leopold, Simulation of drilling process for control of burr formation, Journal of Advanced Mechanical Design, Systems and Manufacturing 4 (2010) 966–975. [CrossRef]
  60. S.Y. Hong, I. Markus, W. Jeong, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf. 41 (2001) 2245–2260. [CrossRef]
  61. R. Ghosh, Z. Zurecki, J.H. Frey, Cryogenic machining with brittle tools and effects on tool life, Proc. of IMECE’03, Paper No.: ICMECE2003-42232.
  62. M. Dhananchezian, M. Pradeep Kumar, A. Rajadurai, Experimental investigation of cryogenic cooling by liquid nitrogen in the orthogonal machining process, International Journal of Recent Trends in Engineering 1 (May 2009) 55–59.
  63. S.C. Jun, Lubrication effect of liquid nitrogen in cryogenic machining friction on the tool-chip interface, Journal of Mechanic, Science and Technology (KSME Int. J.) 19 (2005) 936–946.
  64. F. Pušavec, A. Stoić, J. Kopač, The role of cryogenics in machining processes, Technical Gazette 16 (2009) 3–10.
  65. F. Pušavec, J. Kopač, Sustainability assessment: Cryogenic machining of inconel 718, Strojniški vestnik, J. Mech. Eng. 57 (2011) 637–647. [CrossRef]
  66. T. Lu, O.W. Dillon, Jr., I.S. Jawahir, A thermal analysis framework for cryogenic machining and its contribution to product and process sustainability, Proc. of the 11th Global Conference on Sustainable Manufacturing – Innovative Solutions, Berlin, pp. 262–267, 2013.
  68. J. Leopold, W. Arnold, H. Gründemann, Ein integriertes Gleitlinien-Finite-Elemente-Modell zur Spannungsberechnung vor der Scherlinie, Wiss. Z. d. Techn. Hochschule Karl-Marx-Stadt, 21 (1979) 185–189.
  69. G. Spur, J. Leopold, G. Schmidt, Ermittlung des Spannungs-, Verformungs- und Temperaturverhaltens spanned bearbeiteter Werkstücke mit Hilfe der Visioplastizität und der Finiten Elemente Methode, Proceedings of the DFG Priority Prpogramm “Wirkflächenreibung bei inelastischer Verformung metallischer Werkstoffe, Hannover, 1995.
  70. J. Leopold, et al., Wiss. Z. d. Techn. Hochschule Karl-Marx-Stadt 21 (1979) 185–189.
  71. J. Leopold, FEM modelling and simulation of 3D-chip formation, Proc. of the CIRP Int. Workshop on Modelling of Machining Operations, Atlanta, 1998.
  72. J. Leopold, G. Schmidt, Proc. of the second CIRP international workshop on modelling of machining operations, Nantes, January 25–26, 1999.
  73. J. Leopold, Proc. of the 3rd International Workshop on Modelling of Machining Operations, Sydney, 2000.
  74. X.P. Li, K. Lynkaran, A.Y.C. Nee, A hybrid machining simulator based on predictive machining theory and neuronal network modelling, Journal of Material Processing Technology 89–90 (1999) 224–230.
  75. M. Klärner, J. Leopold, L. Kroll, Analysis of clamping within a fixing system, Lecture Notes in Computer Science 5315 (2008) 356–367. [CrossRef]
  76. J. Leopold, et al., Investigations to new fixturing principles for aerospace structures, Proc. of the Int. Conf. on Applied Production Technology, Bremen, 2007.
  77. J. Leopold, et al., Interaction between machining and new fixturing principles for aerospace structures, Proc. of ESAFORM, 2008.
  78. AFFIX consortium. Affix – aligning, holding and fixing flexible and difficult to handle components,, 2006.
  79. J. Leopold, et al., High performance cutting with optimized cutting tools, Proc. of the 4th CIRP Int. Conf. on High Performance Cutting, Gifu, 201.
  80. M. Sato, K. Kato, K. Tuchiya, Effect of material and anisotropy upon the cutting mechanism, Trans. JIM. 9 (1978) 530–536.
  81. W. König, N. Spenrath, The influence of the crystallographic structure of the substrate material on surface quality and cutting forces in micromachining, Proc. 6th Int. Precision Engng. Seminar, Braunschweig, Germany, pp. 141, 1991.
  82. J.D. Kim, D.S. Kim, Theoretical analysis of micro-cutting characteristics in ultra-precision machining, J. Mater. Process. Technol. 49 (1995) 387–398. [CrossRef]
  83. W.B. Lee, C.F. Cheung, S. To, Characteristics of micro-cutting force variation in ultraprecision diamond turning, Mater. Manuf. Process. 16 (2001) 177–193. [CrossRef]
  84. W.B. Lee, C.F. Cheung, S. To, A microplasticity analysis of micro-cutting force variation in ultra-precision diamond turning, Transactions of the ASME 124, May (2002), 170–177.
  85. A. Simoneau, E. Ng, M.A. Elbestawi, Grain size and orientation effects when microcutting AISI 1045 steel, CIRP Ann. 56 (2007) 57–60. [CrossRef]
  86. V. Schulze, J. Michna, F. Zanger, R. Pabst, Modelling the process-induced modifications of the microstructure of work piece surface zones in cutting processes, Advanced Materials Research 223 (2011) 371–380. [CrossRef]
  87. M. Abouridouane, F. Klocke, D. Lung, O. Adams, A new 3D multiphase FE model for micro cutting ferritic-pearlitic carbon steels, CIRP Ann. 61 (2012) 71–74. [CrossRef]
  88. J.W. Erben, Mikrovisioplastische Untersuchungen an ein- und zweiphasigen metallischen Werkstoffen als Bindeglied zur numerischen Modellierung der Mikrostruktur, Abschlussbericht DFG Le746/17, 1999.
  89. G. Schmidt, R. Leopold, R. Neugebauer, FE-simulation of nonlinear dynamical effects in coating-substrate-systems, 4th Int. Symposium: Investigations of Non-Linear Dynamic Effects in Production Systems, Chemnitz, Germany, April 8–9, 2003.
  90. FP7 project, “Multiscale Modelling for Multilayered Surface Systems” (M3-2S), Grant No: NMP3- SL-2008- 213600.
  92. J. Leopold, et al., An advanced adaptive finite element code for coating-substrate simulation, J. Multiscale Modelling 03 (2011) 91. [CrossRef]
  93. A.V. Byakova, J. Leopold, Effect of stress state on failure resistance of brittle high-strength coatings, Unpublished report, 1996.
  94. J. Leopold, R. Wohlgemuth, D. Shan, Y. Qin, Modelling and simulation of coating-substrate-systems: state-of-the-art and future trends, Proc. of the Conference “THEA Coatings”, Thessaloniki, 2011.
  95. J. Leopold, R. Wohlgemuth, J. Lin, S.V. Subramanian, T. Matsumura, New concepts for micro-structural simulations of coating-substrate-systems, Proc. of the 12th CIRP Conf. on Modelling of Machining Operations, Donostia, San Sebastián, Spain, 1 (2009) 117–124.
  96. S. Wang, J. Lin, D. Balint, Modelling of failure features for TiN Coatings with different substrate materials, J. Multiscale Modelling 03 (2011) 49. [CrossRef]
  97. D.Q. Qin, et al., Prediction of residual stress in multilayered coatings with a linear elastic model incorporating density functional theory calculations, J. Multiscale Modelling 03 (2011) 65. [CrossRef]
  98. R. Neugebauer, R. Wertheim, U. Semmler, The atomic finite element method as a bridge between molecular dynamics and continuum mechanics, J. Multiscale Modelling 03 (2011) 39. [CrossRef]
  99. J. Leopold, H. Gründemann, W. Totzauer, Kontinuumsmechanische Methoden zur Modellierung des Spanbildungsprozesses, Sitzungsberichte der AdW der DDR, 12N/1979, 51–81.
  100. C.A. Luttervelt, et al., Present situation and future trends in modelling of machining operations, CIRP Ann. 47 (1998) 587–626. [CrossRef]
  101. E.H. Lee, B.W. Shaffer, The theory of plasticity applied to a problem of machining, Transaction of ASME 73 (1951) 405–413.
  102. M.C. Shaw, Metal cutting principles. 3rd ed., MIT Press, Cambridge, 1954.
  103. W.B. Palmer, P.L.B. Oxley, Mechanics of orthogonal machining, Proceedings of the Institute of Mechanical Engineers 173 (1959) 623–654. [CrossRef]
  104. H. Weber, Mechanik der Spanbildung, Wiss. Z. der TH Karl-Marx-Stadt 11 (1969) 597–629.
  105. M.G. Stevenson, P.L.B. Oxley, An experimental investigations of the influence of strain rate and temperatures on the flow stress properties of a low carbon steel using machining test, Proc. Inst. Mech. Eng. 185 (1970) 741–754. [CrossRef]
  106. R. Makino, E. Usui, An analysis of stress and strain distributions in the plastic region of slow speed, steady-state machining, Bull. Japan Soc. of Prec. Engg. 7 (1973) 43–50.
  107. N. Fang, I.S. Jawahir, An analytical predictive model and experimental validation for machining with grooved tools incorporating effects of strains, strain-rates and temperature, CIRP Annals – Manufacturing Technology 51 (2002) 83–87. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.