Open Access
Review
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 24
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2015001
Published online 17 February 2015
  1. H. Paschke, M. Weber, G. Braeuer, T. Yilkiran, B.A. Behrens, H. Brand, Optimized plasma nitriding processes for efficient wear reduction of forging dies, Archives of Civil and Mechanical Engineering 12 (2012) 407–412. [CrossRef]
  2. A. Shokrani, V. Dhokia, S.T. Newman, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, International Journal of Machine Tools and Manufacture 57 (2012) 83–101. [CrossRef]
  3. T.W. Scharf, S.V. Prasad, Solid lubricants: a review, Journal of Materials Science 48 (2013) 511–531. [CrossRef]
  4. T.W. Scharf, S.V. Prasad, M.T. Dugger, P.G. Kotula, R.S. Goeke, R.K. Grubbs, Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS, Acta Materialia 54 (2006) 4731–4743. [CrossRef]
  5. H.E. Sliney. Self-lubricating fluoride-metal composite materials. USA: US3419363A; 1968.
  6. B. Stegemann, M. Klemm, S. Horn, M. Woydt, Switching adhesion forces by crossing the metal-insulator transition in Magnéli-type vanadium oxide crystals, Beilstein Journal of Nanotechnology 2 (2011) 59–65. [CrossRef]
  7. G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Magnéli phase formation of PVD Mo-N and W-N coatings, Surface & Coatings Technology 201 (2006) 3335–3341. [CrossRef]
  8. W. Gulbiński, T. Suszko, Thin films of MoO3-Ag2O binary oxides – the high temperature lubricants, Wear 261 (2006) 867–873. [CrossRef]
  9. D. Stone, et al., Layered atomic structures of double oxides for low shear strength at high temperatures, Scripta Materialia 62 (2010) 735–738. [CrossRef]
  10. C. Higdon, et al., Friction and wear mechanisms in AlMgB14-TiB2 nanocoatings, Wear 271 (2011) 2111–2115. [CrossRef]
  11. R. Cherukuri, M. Womack, P. Molian, A. Russell, Y. Tian, Pulsed laser deposition of AlMgB14 on carbide inserts for metal cutting, Surface and Coatings Technology 155 (2002) 112–120. [CrossRef]
  12. S.M. Aouadi, B. Luster, P. Kohli, C. Muratore, A.A. Voevodin, Progress in the development of adaptive nitride-based coatings for high temperature tribological applications, Surface and Coatings Technology 204 (2009) 962–968. [CrossRef]
  13. K.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M’Saoubi, Cutting with coated tools: Coating technologies, characterization methods and performance optimization, CIRP Annals – Manufacturing Technology 61 (2012) 703–723. [CrossRef]
  14. K. Kutschej, C. Mitterer, C. Mulligan, D. Gall, High-temperature tribological behavior of CrN-Ag self-lubricating coatings, Advanced Engineering Materials 8 (2006) 1125–1129. [CrossRef]
  15. K. Kutschej, N. Fateh, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Comparative study of Ti1−xAlxN coatings alloyed with Hf, Nb, and B, Surface and Coatings Technology 200 (2005) 113–117. [CrossRef]
  16. V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic, Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surface and Coatings Technology 211 (2012) 117–121. [CrossRef]
  17. J.H. Ouyang, T. Murakami, S. Sasaki, High-temperature tribological properties of a cathodic arc ion-plated (V, Ti)N coating, Wear 263 (2007) 1347–1353. [CrossRef]
  18. N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings, Tribology Letters 28 (2007) 1–7. [CrossRef]
  19. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings, Surface and Coatings Technology 200 (2005) 1731–1737. [CrossRef]
  20. P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, W.D. Münz, Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings, Surface and Coatings Technology 177–178 (2004) 341–347. [CrossRef]
  21. W. Tillmann, S. Momeni, F. Hoffmann, A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures, Tribology International 66 (2013) 324–329. [CrossRef]
  22. D. Becker, Wear of nanostructured composite tool coatings, Wear 304 (2013) 88–95. [CrossRef]
  23. K. Bobzin, N. Bagcivan, M. Ewering, R.H. Brugnara, Vanadium alloyed PVD CrAlN coatings for friction reduction in metal forming applications, Tribology in Industry 34 (2012) 101–107.
  24. D.S. Stone, et al., Adaptive NbN/Ag coatings for high temperature tribological applications, Surface and Coatings Technology 206 (2012) 4316–4321. [CrossRef]
  25. D.S. Stone, et al., Lubricious silver tantalate films for extreme temperature applications, Surface and Coatings Technology 217 (2013) 140–146. [CrossRef]
  26. S.M. Aouadi, et al., Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 °C, Acta Materialia 58 (2010) 5326–5331. [CrossRef]
  27. C. Bruce, G. Kerry, Tough nanocoatings boost industrial energy efficiency, Ames Laboratory, US Department of Energy, 2008.
  28. A.H. Shaw, Wear-resistance, lubricity, and adhesion of femtosecond pulsed laser deposited AlMgB14-based thin films [MASTER OF SCIENCE]: 2011. Iowa State University.
  29. M.N. Gardos, The problem-solving role of basic science in solid lubrication. In I.M. Hutchings, editor. the First World Tribology Congress. Mechanical Engineering Publications, London, 1997, pp. 229–250.
  30. W. Gulbiński, T. Suszko, W. Sienicki, B. Warcholiński, Tribological properties of silver- and copper-doped transition metal oxide coatings, Wear 254 (2003) 129–135. [CrossRef]
  31. S. Andersson, A. Magnéli, Diskrete Titanoxydphasen im Zusammensetzungsbereich TiO1,75-TiO1,90, Natur wissenschaften 43 (1956) 495–496. [CrossRef]
  32. A. Magnéli, Structures of the ReO3-type with recurrent dislocations of atoms: “homologous series” of molybdenum and tungsten oxides, Acta Crystallographica 6 (1953) 495–500. [CrossRef]
  33. E. Lugscheider, S. Bärwulf, C. Barimani, Properties of tungsten and vanadium oxides deposited by MSIP-PVD process for self-lubricating applications, Surface and Coatings Technology 120–121 (1999) 458–464. [CrossRef]
  34. E. Lugscheider, O. Knotek, K. Bobzin, S. Bärwulf, Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications, Surface and Coatings Technology 133–134 (2000) 362–368. [CrossRef]
  35. A. Banerji, S. Bhowmick, A.T. Alpas, High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys, Surface and Coatings Technology 241 (2014) 93–104. [CrossRef]
  36. W. Gulbiński, T. Suszko, Thin films of Mo2N/Ag nanocomposite – the structure, mechanical and tribological properties, Surface and Coatings Technology 201 (2006) 1469–1476. [CrossRef]
  37. T. Suszko, W. Gulbiński, J. Jagielski, Mo2N/Cu thin films – the structure, mechanical and tribological properties, Surface and Coatings Technology 200 (2006) 6288–6292. [CrossRef]
  38. C.P. Mulligan, T.A. Blanchet, D. Gall, CrN–Ag nanocomposite coatings: Tribology at room temperature and during a temperature ramp, Surface and Coatings Technology 204 (2010) 1388–1394. [CrossRef]
  39. P. Basnyat, et al., Mechanical and tribological properties of CrAlN-Ag self-lubricating films, Surface and Coatings Technology 202 (2007) 1011–1016. [CrossRef]
  40. K. Kutschej, C. Mitterer, C.P. Mulligan, D. Gall, High-temperature tribological behavior of CrN-Ag self-lubricating coatings, Advanced Engineering Materials 8 (2006) 1125–1129. [CrossRef]
  41. S.M. Aouadi, et al., Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content, Surface and Coatings Technology 203 (2009) 1304–1309. [CrossRef]
  42. W. Zhang, D. Demydov, M.P. Jahan, K. Mistry, A. Erdemir, A.P. Malshe, Fundamental understanding of the tribological and thermal behavior of Ag-MoS2 nanoparticle-based multi-component lubricating system, Wear 288 (2012) 9–16. [CrossRef]
  43. S.V. Prasad, N.T. McDevitt, J.S. Zabinski, Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500 °C, Wear 237 (2000) 186–196. [CrossRef]
  44. J.S. Zabinski, M.S. Donley, N.T. McDevitt, Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy, Wear 165 (1993) 103–108. [CrossRef]
  45. J.S. Zabinski, M.S. Donley, V.J. Dyhouse, N.T. McDevitt, Chemical and tribological characterization of PbO/MoS2 films grown by pulsed laser deposition, Thin Solid Films 214 (1992) 156–163. [CrossRef]
  46. X.T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering, Surface and Coatings Technology 113 (1999) 75–79. [CrossRef]
  47. M. Halvarsson, J.E. Trancik, S. Ruppi, The microstructure of CVD κ-Al2O3 multilayers separated by thin intermediate TiN or TiC layers, International Journal of Refractory Metals and Hard Materials 24 (2006) 32–38. [CrossRef]
  48. C. Muratore, J.J. Hu, A.A. Voevodin, Tribological coatings for lubrication over multiple thermal cycles, Surface and Coatings Technology 203 (2009) 957–962. [CrossRef]
  49. A.A. Voevodin, T.A. Fitz, J.J. Hu, J.S. Zabinski, Nanocomposite tribological coatings with “chameleon” surface adaptation, Journal of Vacuum Science & Technology A 20 (2002) 1434–1444. [CrossRef]
  50. A.A. Voevodin, J.S. Zabinski, Supertough wear-resistant coatings with “chameleon” surface adaptation, Thin Solid Films 370 (2000) 223–231. [CrossRef]
  51. H. Paschke, M. Stueber, C. Ziebert, M. Bistron, P. Mayrhofer, Composition, microstructure and mechanical properties of boron containing multilayer coatings for hot forming tools, Surface and Coatings Technology 205 (2011) S24–S28. [CrossRef]
  52. T. Bell, H. Dong, Y. Sun, Realising the potential of duplex surface engineering, Tribology International 31 (1998) 127–137. [CrossRef]
  53. A.A. Voevodin, J.S. Zabinski, Laser surface texturing for adaptive solid lubrication, Wear 261 (2006) 1285–1292. [CrossRef]
  54. X. Wang, K. Adachi, K. Otsuka, K. Kato, Optimization of the surface texture for silicon carbide sliding in water, Applied Surface Science 253 (2006) 1282–1286. [CrossRef]
  55. J.E. Krzanowski, J.L. Endrino, K. Hirschman, Novel composite coatings with 3D coating architectures for tribological applications fabricated using semiconductor patterning processes 203 (2002) 273–278.
  56. P. Basnyat, et al., Surface texturing for adaptive solid lubrication, Surface and Coatings Technology 203 (2008) 73–79. [CrossRef]
  57. B. Luster, et al., Textured VN coatings with Ag3VO4 solid lubricant reservoirs, Surface and Coatings Technology 206 (2011) 1932–1935. [CrossRef]
  58. A. Moshkovith, V. Perfiliev, D. Gindin, N. Parkansky, R. Boxman, L. Rapoport, Surface texturing using pulsed air arc treatment, Wear 263 (2007) 1467–1469 [CrossRef]
  59. J.H. Zimmerman, C.G. Guleryuz, J.E. Krzanowski, Fabrication and tribological properties of titanium nitride coatings incorporating solid lubricant microreservoirs, Surface and Coatings Technology, 202 (2008) 2023–2032. [CrossRef]
  60. P.L. Dickrell, et al., Tunable friction behavior of oriented carbon nanotube films, Tribology Letters, 24 (2006) 85–90. [CrossRef]
  61. X. Zhang, et al., Carbon nanotube-MoS2 composites as solid lubricants, ACS Applied Materials and Interfaces 1 (2009) 735–739. [CrossRef]
  62. A.H. Church, X.F. Zhang, B. Sirsota, P. Kohli, S.M. Aouadi, S. Talapatra, Carbon nanotube-based adaptive solid lubricant composites, Advanced Science Letters 5 (2012) 188–191. [CrossRef]
  63. D. Golberg, et al., Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes, Nano Letters 7 (2007) 2146–2151. [CrossRef]
  64. B. Podgornik, S. Hogmark, O. Sandberg, Proper coating selection for improved galling performance of forming tool steel, Wear 261 (2006) 15–21. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.