Issue |
Manufacturing Rev.
Volume 9, 2022
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/mfreview/2022007 | |
Published online | 22 April 2022 |
Research Article
Multi-criteria decision making of turning operation based on PEG, PSI and CURLI methods
Faculty of Mechanical Engineering, Hanoi University of Industry, Vietnam
* e-mail: doductrung@haui.edu.vn
Received:
15
November
2021
Accepted:
4
March
2022
Multi-criteria decision-making (MCDM) is the methods identify an alternative that is considered the best among the implemented alternatives. This issue is probably more significant since each alternative is evaluated based on many criteria that may be contrary. This paper presents the multi-criteria decision-making of a turning process. Turning experiments were carried out with a total of sixteen alternatives. A test material used is SB410 steel. Cutting tools are coated with TiN. The aim of this study is to determine the experiment where the minimum surface roughness and the maximum material removal rate (MRR) are simultaneously obtained. Three multi-criteria decision-making methods were used include: Pareto-Edgeworth Grierson (PEG), Preference Selection Index (PSI) and Collaborative Unbiased Rank List Integration (CURLI). In each case of the application, it is not necessary to define weights for the criteria. The stability of ranking the alternatives on the basis of different MCDM methods is also identified according to the value Gini index. The results demonstrate that the PEG and CURLI methods both determine the best option. The cutting velocity of 1700 rev/min, feed rate 0.192 mm/rev and depth of cut of 0.6 mm are the options where the surface roughness and MRR are minimum and maximum respectively.
Key words: MCDM / PEG / PSI / CURLI / TURNING / GINI INDEX
© D. Duc Trung, Published by EDP Sciences 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.