Open Access

Table 5

Comparison of hyperparameters of various algorithm by default and tuned values.

Algorithm Hyperparameter Tuned valuea Default valueb
LDA n_components 0 None
  tol 0.0001 0.0001
  random_statec 815 1
RCCV alphas array([1.0]) array([0.1, 1.0, 10.0])
  cv 2 None
  normalize ′deprecated′ ′deprecated′
  random_statec 416 1
ETC criterion ′gini′ ′gini′
  max_depth 11 None
  min_samples_leaf 1 1
  min_samples_split 2 2
  n_estimators 8 100
  random_state 42 None
  random_statec 11 1
RFC criterion ′gini′ ′gini′
  max_depth 16 None
  min_samples_leaf 1 1
  min_samples_split 2 2
  n_jobs -1 None
  n_estimators 27 100
  random_state 11 None
  random_statec 755 1
XGBoost max_depth 2 None
  n_estimators 45 100
  objective ′multi:softprob′ ′binary:logistic′
  random_state 1 None
  random_statec 8 1
a

The hyperparameters that resulted in the best accuracy scores.

b

The default hyperparameters in the super learner package.

c

The randomize parameter controls the random splitting of a dataset into training and testing sets.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.