Open Access
Manufacturing Rev.
Volume 11, 2024
Article Number 11
Number of page(s) 15
Published online 19 April 2024
  1. P. Chommuangpuck, T. Wanglomklang, S. Tantrairatn, J. Srisertpol, Fault tolerant control based on an observer on PI servo design for a high-speed automation machine, Machines 8 (2020) 22 [Google Scholar]
  2. P. Chommuangpuck, T. Wanglomklang, J. Srisertpol. Fault detection and diagnosis of linear bearing in auto core adhesion mounting machines based on condition monitoring, Syst. Sci. Control Eng. 9 (2021) 290–303 [Google Scholar]
  3. T. Wanglomklang, P. Chommaungpuck, K. Chomniprasart, J. Srisertpol. Using fault detection and classification techniques for machine breakdown reduction of the HGA process caused by the slider loss defect, Manufactur. Rev. 9 (2022) 21 [Google Scholar]
  4. C. Sapapporn, S. Seangsri, J. Srisertpol, Classifying and optimizing spiral seed self-servo writer parameters in manufacturing process using artificial intelligence techniques, Systems 11 (2023) 268 [Google Scholar]
  5. S.J. Wagh, M.S. Bhende, A.D. Thakare, Fundamentals of data science, 1st edn. Taylor & Francis Group, London, 2021, 296 pp [Google Scholar]
  6. M.U. Malik, Python scikit-learn for beginners: Scikit-learn specialization for data scientist, 1st edn. AI Publishing, Michigan, 2021, 405 pp [Google Scholar]
  7. A.D. Mauro, Data analytics made easy, 1st edn. Packt Publishing, UK, 2021, 406pp [Google Scholar]
  8. G. Wang, L. Zhang, W. Xu, What can we learn from four years of data center hardware failures? in 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE (2017) [Google Scholar]
  9. A. Lawi, S.L. Wungo, S. Manjang, Identifying irregularity electricity usage of customer behaviors using logistic regression and linear discriminant analysis, in 2017 3rd International Conference on Science in Information Technology (ICSITech), IEEE (2017) [Google Scholar]
  10. G.B.G. Pereira, L.P. Fernandes, J.M.R. d.S., Neto, H.D d.M.., Braz, L. da Silva Sauer, A comparative study of linear discriminant analysis and an artificial neural network performances in breast cancer diagnosis, in 2020 IEEE Andean Conference, IEEE (2020) [Google Scholar]
  11. A. Singh, B.S. Prakash, K. Chandrasekaran, A comparison of linear discriminant analysis and ridge classifier on Twitter data, in International Conference on Computing, Communication and Automation (ICCCA2016), IEEE (2016) [Google Scholar]
  12. R.K. Grace, M.I. Priyadharshini, Wind speed prediction using extra tree classifier, in International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), IEEE (2023) [Google Scholar]
  13. B. Dhananjay, N.P. Venkatesh, A. Bhardwaj, J. Sivaraman, Cardiac signals classification based on extra trees model, in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE (2021). [Google Scholar]
  14. J. Shen, J. Wan, S.J. Lim, L. Yu, Random-forest-based failure prediction for hard disk drives, Int. J. Distrib. Sens. Netw. 14 (2018) [Google Scholar]
  15. O. Alshboul, A. Shehadeh, G. Almasabha, A.S. Almuflih, Extreme gradient boosting-based machine learning approach for green building cost prediction, Sustainability 14 (2022) 6651 [Google Scholar]
  16. K. M, V.S. Akshaya, A XGBOOST Based algorithm for early prediction of human sepsis, in 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE (2022) [Google Scholar]
  17. M.E. Irawati, H. Zakaria, Classification model for Covid-19 detection through recording of cough using XGboost classifier algorithm, in 2021 International Symposium on Electronics and Smart Devices (ISESD), IEEE (2021) [Google Scholar]
  18. Q. Li, H. Li, K. Zhang, Prediction of HDD failures by ensemble learning, in 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), IEEE (2020) [Google Scholar]
  19. Z. Miller, O. Medaiyese, M. Ravi, A. Beatty, F. Lin, Hard disk drive failure analysis and prediction: an industry view, in 2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks − Supplemental Volume (DSN-S), IEEE (2023) [Google Scholar]
  20. P. Bruce, A. Bruce, P. Gedeck, Practical statistics for data scientists, Published by O’Reilly Media, Inc. 2020 [Google Scholar]
  21. Z.H. Nasiruddin, W.M. Diyana W Zaki, S.A. Hudaibah, A.H. Nur Asyiqin, Automated retinal blood vessel feature extraction in digital fundus images, in 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), IEEE (2022) [Google Scholar]
  22. I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, N. Doulamis, Multiclass confusion matrix reduction method and its application on net promoter score classification problem, Technologies 9 (2021) 81 [Google Scholar]
  23. T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 861–874 (2006) 861–874 [Google Scholar]
  24. S. Yang, G. Berdine, The receiver operating characteristic (ROC) curve, Southwest Respirat. Critical Care Chronicles 5 (2017) 34–36 [Google Scholar]
  25. L. Zhang and N. Hu, ROC analysis based condition indicator threshold optimization method, in 2017 Prognostics and System Health Management Conference (PHM-Harbin), IEEE (2017) [Google Scholar]
  26. H. Wan, Q. Liu, Y. Ju, Utilize a few features to classify presynaptic and postsynaptic neurotoxins, Comput. Biol. Med. 152 (2023) 106380 [CrossRef] [Google Scholar]
  27. P. Kumar, M. Sharma, Feature-importance feature-interactions (FIFI) graph: A graph-based novel visualization for interpretable machine learning, in 2021 International Conference on Intelligent Technologies (CONIT), IEEE (2021) [Google Scholar]
  28. J. Yu, C. Xia, H. Zhang, Research on feature importance of gait mechanomyography signal based on random forest, in 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), IEEE (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.