Issue
Manufacturing Rev.
Volume 7, 2020
Special Issue - The emerging materials and processing technologies
Article Number 6
Number of page(s) 9
DOI https://doi.org/10.1051/mfreview/2020005
Published online 28 February 2020
  1. D.K. Jesthi, R.K. Nayak, Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites, Compos. B Eng. 174 (2019) 106980 [CrossRef] [Google Scholar]
  2. S.A. Kurnosenko, O.I. Silyukov, A.S. Mazur, I.A. Zvereva, Synthesis and thermal stability of new inorganic-organic perovskite-like hybrids based on layered titanates HLnTiO4 (Ln = La, Nd), Ceram. Int. 4 (2019) 5058–5068 [Google Scholar]
  3. V. Lapkovskis, V. Mironovs, K. Irtiseva, D. Goljandin, Study of devulcanised crumb rubber-peat bio-based composite for environmental applications, Key Eng. Mater. 799 (2019) 148–152 [CrossRef] [Google Scholar]
  4. D.D. Luong, V.C. Shunmugasamy, N. Gupta, D. Lehmhus, J. Weise, J. Baumeister, Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams, Mater. Des. 66 (2015) 516–531 [CrossRef] [Google Scholar]
  5. L. Peroni et al., High strain rate tensile and compressive esting and performance of mesoporous invar (FeNi36) matrix syntactic foams produced by feedstock extrusion, Adv. Eng. Mater. 19 (2017) 1600474 [CrossRef] [Google Scholar]
  6. K. Rugele, D. Lehmhus, I. Hussainova, J. Peculevica, M. Lisnanskis, A. Shishkin, Effect of ly-ash cenospheres on properties of clay-ceramic syntactic foams, Materials 10 (2017) 828 [CrossRef] [Google Scholar]
  7. A. Shishkin, M. Drozdova, V. Kozlov, I. Hussainova, D. Lehmhus, Vibration-assisted sputter coating of cenospheres: a new approach for realizing Cu-based metal matrix syntactic foams, Metals 7 (2017) 16 [CrossRef] [Google Scholar]
  8. A. Shishkin, I. Hussainova, V. Kozlov, M. Lisnanskis, P. Leroy, D. Lehmhus, Metal-coated cenospheres obtained via magnetron putter coating: a new precursor for syntactic foams, JOM 70 (2018) 1319–1325 [CrossRef] [Google Scholar]
  9. A. Shishkin, V. Mironov, V. Zemchenkov, M. Antonov, I. Hussainova, Hybrid syntactic foams of metal − fly ash cenosphere − clay, Key Eng. Mater. 674 (2016) 35–40 [CrossRef] [Google Scholar]
  10. P. Vignesh, G. Venkatachalam, A. Gautham Shankar, A. Singh, R. Pagaria, A. Prasad, Studies on tensile strength of sugarcane fiber reinforced hybrid polymer matrix composite, Mater. Today Proc. 5 (2018) 13347–13357 [CrossRef] [Google Scholar]
  11. J. Weise, A.F. Queiroz Barbosa, O. Yezerska, D. Lehmhus, J. Baumeister, Mechanical behavior of particulate aluminium-epoxy hybrid foams based on cold-setting polymers, Adv. Eng. Mater. 19 (2017) 1700090 [CrossRef] [Google Scholar]
  12. R. Lapovok et al., Architectured hybrid conductors: aluminium with embedded copper helix, Mater. Des. 187 (2019) 108398. https://doi.org/10.1016/j.matdes.2019.108398 [CrossRef] [Google Scholar]
  13. A. Koptyug et al., Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders, Mater. Sci. Eng. A 771 (2019) 138587. https://doi.org/10.1016/j.msea.2019.138587 [CrossRef] [Google Scholar]
  14. I. Todaro, R. Squatrito, S. Essel, H. Zeidler, High conductive aluminium metal matrix composites with carbon inserts obtained by casting processes, Mater. Today Proc. 10 (2019) 277–287 [CrossRef] [Google Scholar]
  15. S. Song, Z. Gao, B. Lu, C. Bao, B. Zheng, L. Wang, Performance optimization of complicated structural SiC/Si composite ceramics prepared by selective laser sintering, Ceram. Int. 46 (2020) 568–575 [CrossRef] [Google Scholar]
  16. S. Singamneni et al., Selective laser sintering responses of keratin-based bio-polymer composites, Mater. Des. 183 (2019) 108087 [CrossRef] [Google Scholar]
  17. R. Hong, Z. Zhao, J. Leng, J. Wu, J. Zhang, Two-step approach based on selective laser sintering for high performance carbon black/ polyamide 12 composite with 3D segregated conductive network, Compos. B Eng. 176 (2019) 107214 [CrossRef] [Google Scholar]
  18. A. Katz-Demyanetz, V.V. Popov, A. Kovalevsky, D. Safranchik, A. Koptyug, Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends, Manuf. Rev. 6 (2019) 5. https://doi.org/10.1051/mfreview/2019003 [Google Scholar]
  19. A. Adeyemi, E.T. Akinlabi, R.M. Mahamood, Powder bed based laser additive manufacturing process of stainless steel: a review, Mater. Today Proc. 5 (2018) 18510–18517 [CrossRef] [Google Scholar]
  20. S. Afkhami, M. Dabiri, S.H. Alavi, T. Björk, A. Salminen, Fatigue characteristics of steels manufactured by selective laser melting, Int. J. Fatigue 122 (2019) 72–83 [CrossRef] [Google Scholar]
  21. V.V. Popov, A. Katz-Demyanetz, A. Garkun, M. Bamberger, The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4 V specimens, Addit. Manuf. 22 (2018) 834–843. https://doi.org/10.1016/j.addma.2018.06.003 [CrossRef] [Google Scholar]
  22. V.V. Popov et al., Effect of the hatching strategies on mechanical properties and microstructure of SEBM manufactured Ti-6Al-4V specimens, Lett. Mater. 8 (2018) 468–472. https://doi.org/10.22226/2410-3535-2018-4-468-472 [CrossRef] [Google Scholar]
  23. C.J. Smith et al., Dimensional accuracy of electron beam melting (EBM) additive manufacture with regard to weight optimized truss structures, J. Mater. Process. Technol. 229 (2016) 128–138 [CrossRef] [Google Scholar]
  24. A. Koptioug, L.E. Rännar, M. Bäckström, S.Z. Jian, New metallurgy of additive manufacturing in metal: experiences from the material and process development with electron beam melting technology (EBM), Mater. Sci. Forum 879 (2016) 996–1001 [CrossRef] [Google Scholar]
  25. L.-E. Rännar, A. Koptyug, J. Olsén, K. Saeidi, Z. Shen, Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting, Addit. Manuf. 17 (2017) 106–112 [CrossRef] [Google Scholar]
  26. A. Fleisher et al., Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration, Ceram. Int. 45 (2019) 18023–18029. https://doi.org/10.1016/j.ceramint.2019.06.021 [CrossRef] [Google Scholar]
  27. S. Vangapally, K. Agarwal, A. Sheldon, S. Cai, Effect of lattice design and process parameters on dimensional and mechanical properties of binder jet additively manufactured stainless steel 316 for bone scaffolds, Procedia Manuf. 10 (2017) 750–759 [CrossRef] [Google Scholar]
  28. M. Doyle, K. Agarwal, W. Sealy, K. Schull, Effect of layer thickness and orientation on mechanical behavior of binder jet stainless steel 420 + bronze Parts, Procedia Manuf. 1 (2015) 251–262 [CrossRef] [Google Scholar]
  29. S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Addit. Manuf. 8 (2015) 36–62 [CrossRef] [Google Scholar]
  30. M. Merklein, D. Junker, A. Schaub, F. Neubauer, Hybrid additive manufacturing technologies − an analysis regarding potentials and applications, Phys. Procedia 83 (2016) 549–559 [CrossRef] [Google Scholar]
  31. E.M. White, A.G. Kassen, E. Şimşek, W. Tang, R.T. Ott, I.E. Anderson, Net shape processing of alnico magnets by additive manufacturing, IEEE Transac. Magn. 53 (2017) 1–6 [CrossRef] [Google Scholar]
  32. D. Ding, Z. Pan, D. Cuiuri, H. Li, A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM), Robot. Comput. Integr. Manuf. 31 (2015) 101–110 [CrossRef] [Google Scholar]
  33. M.T. Stawovy, Comparison of LCAC and PM Mo deposited using Sciaky EBAMTM, Int. J. Refract. Met. Hard Mater. 73 (2018) 162–167 [CrossRef] [Google Scholar]
  34. Sciaky Inc., Official web-site of Sciaky Inc. [Online]. Available: https://www.sciaky.com/eb-welding-systems/electron-beam-welding-solutions. [Google Scholar]
  35. D. Strong, M. Kay, B. Conner, T. Wakefield, G. Manogharan, Hybrid manufacturing − integrating traditional manufacturers with additive manufacturing (AM) supply chain, Addit. Manuf. 21 (2018) 159–173 [CrossRef] [Google Scholar]
  36. Z.C. Oter et al., Benefits of laser beam based additive manufacturing in die production, Optik 176 (2019) 175–184 [CrossRef] [Google Scholar]
  37. H. Azizi et al., Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting, Addit. Manuf. 27 (2019) 389–397 [CrossRef] [Google Scholar]
  38. A. Ebrahimi, M. Mohammadi, Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels, Addit. Manuf. 23 (2018) 381–393 [CrossRef] [Google Scholar]
  39. S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, S. Shamsdini, J. Li, M. Mohammadi, Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique, Addit. Manuf. 29 (2019) 100797 [CrossRef] [Google Scholar]
  40. M. Praniewicz, T. Kurfess, C. Saldana, Adaptive geometry transformation and repair for hybrid manufacturing, Procedia Manufacturing 26 (2018) 228–236 [CrossRef] [Google Scholar]
  41. Y. Li, Q. Han, I. Horváth, G. Zhang, Repairing surface defects of metal parts by groove machining and wire + arc based filling, J. Mater. Process. Technol. 274 (2019) 116268 [CrossRef] [Google Scholar]
  42. G. Manogharan, R. Wysk, O. Harrysson, R. Aman, AIMS − A metal additive-hybrid manufacturing system: system architecture and attributes, Procedia Manuf. 1 (2015) 273–286 [CrossRef] [Google Scholar]
  43. M. Silva, R. Felismina, A. Mateus, P. Parreira, C. Malça, Application of a hybrid additive manufacturing methodology to produce a metal/polymer customized dental implant, Procedia Manuf. 12 (2017) 150–155 [CrossRef] [Google Scholar]
  44. Y.-H. Chueh, C. Wei, X. Zhang, L. Li, Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects, Addit. Manuf. 31 (2020) 100928 [CrossRef] [Google Scholar]
  45. X. Shi et al., Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties, Mater. Sci. Eng. A 684 (2017) 196–204 [CrossRef] [Google Scholar]
  46. C.J. Huang et al., Additive manufacturing hybrid Ni/Ti-6Al-4V structural component via selective laser melting and cold spraying, Vacuum 151 (2018) 275–282 [CrossRef] [Google Scholar]
  47. T. Yamazaki, Development of a hybrid multi-tasking machine tool: integration of additive manufacturing technology with CNC machining, Procedia CIRP 42 (2016) 81–86 [CrossRef] [Google Scholar]
  48. A. Leon, G.K. Levy, T. Ron, A. Shirizly, E. Aghion, The effect of hot isostatic pressure on the corrosion performance of Ti-6Al-4V produced by an electron-beam melting additive manufacturing process, Addit. Manuf. (2020) 101039 [CrossRef] [Google Scholar]
  49. E. Cyr, H. Asgari, S. Shamsdini, M. Purdy, K. Hosseinkhani, M. Mohammadi, Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels, Mater. Lett. 212 (2018) 174–177 [CrossRef] [Google Scholar]
  50. A. Koptyug, M. Bäckström, C.A. Botero Vega, V.V. Popov, E. Chudinova, Developing new materials for electron beam melting: experiences and challenges, Mater. Sci. Forum 941 (2018) 2190–2195. https://doi.org/10.4028/www.scientific.net/MSF.941.2190 [CrossRef] [Google Scholar]
  51. A. Koptyug, L.-E. Rännar, C. Botero, M. Bäckström, V. Popov, Blended powders can be successfully used in Electron Beam Melting yielding unique material compositions, in EuroPM2018 Proceedings, EPMA, Shrewsbury, 2018 [Google Scholar]
  52. K.P. Karunakaran, S. Suryakumar, V. Pushpa, S. Akula, Low cost integration of additive and subtractive processes for hybrid layered manufacturing, Robot. Comput. Integr. Manuf. 26 (2010) 490–499 [CrossRef] [Google Scholar]
  53. J. Mazumder, D. Dutta, N. Kikuchi, A. Ghosh, Closed loop direct metal deposition: art to part, Opt. Lasers Eng. 34 (2000) 397–414 [CrossRef] [Google Scholar]
  54. P. Wanjara, M. Brochu, M. Jahazi, Electron beam freeforming of stainless steel using solid wire feed, Mater. Des. 28 (2007) 2278–2286 [CrossRef] [Google Scholar]
  55. A. Sreenathbabu, K.P. Karunakaran, C. Amarnath, Statistical process design for hybrid adaptive layer manufacturing, Rapid Prototyp. J. 11 (2005) 235–248 [CrossRef] [Google Scholar]
  56. J.N. DuPont, A.R. Marder, Thermal efficiency of arc welding processes, Weld. J. 74 (1995) 406 [Google Scholar]
  57. N. Stenbacka, I. Choquet, K. Hurtig, Review of Arc Efficiency Values for Gas Tungsten Arc Welding, IIW Commission IV-XII-SG212 Intermediate Meeting, Berlin, Germany, 2012, pp. 1–21 [Google Scholar]
  58. R.R. Unocic, J.N. DuPont, Process efficiency measurements in the laser engineered net shaping process, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 35 (2004) 143–152 [CrossRef] [Google Scholar]
  59. L.E. Rannar, A. Glad, C.G. Gustafson, Efficient cooling with tool inserts manufactured by electron beam melting, Rapid Prototyp. J. 13 (2007) 128–135 [CrossRef] [Google Scholar]
  60. K.-H. Chang, K.-H. Chang, Rapid Prototyping, e-Design, Academic Press, Boston, MA, 2015, pp. 743–786 [Google Scholar]
  61. X. Zhang, G. Mi, C. Wang, Microstructure and performance of hybrid laser-arc welded high-strength low alloy steel and austenitic stainless steel dissimilar joint, Opt. Laser Technol. 122 (2020) 105878 [CrossRef] [Google Scholar]
  62. Y. Zhang, A. Bandyopadhyay, Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using Laser Engineered Net Shaping, Addit. Manuf. 21 (2018) 104–111 [CrossRef] [Google Scholar]
  63. Y. Zhong et al., Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications, J. Nucl. Mater. 486 (2017) 234–245 [CrossRef] [Google Scholar]
  64. T. Zhong, K. He, H. Li, L. Yang, Mechanical properties of lightweight 316L stainless steel lattice structures fabricated by selective laser melting, Mater. Des. 181 (2019) 108076 [CrossRef] [Google Scholar]
  65. F. Klocke, K. Arntz, M. Teli, K. Winands, M. Wegener, S. Oliari, State-of-the-art Laser Additive Manufacturing for Hot-work Tool Steels, Procedia CIRP 63 (2017) 58–63 [CrossRef] [Google Scholar]
  66. A.D. Pogrebnyak et al., Properties and structure of oxidized coatings deposited onto Al-Cu and Al-Mg alloys, Tech. Phys. 57 (2012) 840–848 [CrossRef] [Google Scholar]
  67. M.Y. Rekha, C. Srivastava, Microstructure and corrosion properties of zinc-graphene oxide composite coatings, Corros. Sci. 152 (2019) 234–248 [CrossRef] [Google Scholar]
  68. O.V. Bondar et al., Fabrication and research of superhard (Zr-Ti-Cr-Nb)N Coatings, Acta Phys. Pol. A 128 (2015) 867–870 [CrossRef] [Google Scholar]
  69. J. Nohava, P. Dessarzin, P. Karvankova, M. Morstein, Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures, Tribol. Int. 81 (2015) 231–239 [CrossRef] [Google Scholar]
  70. Z. Lei et al., Corrosion performance of ZrN/ZrO2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating, Appl. Surf. Sci. 431 (2018) 170–176 [CrossRef] [Google Scholar]
  71. B.O. Postolnyi, P. Konarski, F.F. Komarov, O.V. Sobol', O.V. Kyrychenko, D.S. Shevchuk, Study of elemental and structural phase composition of multilayer nanostructured TiN / MoN coatings, their physical and mechanical properties, J. Nano- Electron. Phys. 6 (2014) 4 [Google Scholar]
  72. Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: A review, Metals 7 (2017) 1–18 [Google Scholar]
  73. W. Li, P. Liu, P. K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: A review, Mater. Res. Lett. 6 (2018) 199–229 [CrossRef] [Google Scholar]
  74. A. López-Ortega, J.L. Arana, E. Rodríguez, R. Bayón, Corrosion, wear and tribocorrosion performance of a thermally sprayed aluminum coating modified by plasma electrolytic oxidation technique for offshore submerged components protection, Corros. Sci. 143 (2018) 258–280 [CrossRef] [Google Scholar]
  75. Y. Wang, L. Zhang, S. Daynes, H. Zhang, S. Feih, M.Y. Wang, Design of graded lattice structure with optimized mesostructures for additive manufacturing, Mater. Des. 142 (2018) 114–123 [CrossRef] [Google Scholar]
  76. V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend, Heliyon 5 (2019) e01188. https://doi.org/10.1016/j.heliyon.2019.e01188 [CrossRef] [Google Scholar]
  77. S. Yin, X. Yan, C. Chen, R. Jenkins, M. Liu, R. Lupoi, Hybrid additive manufacturing of Al-Ti6Al4V functionally graded materials with selective laser melting and cold spraying, J. Mater. Process. Technol. 255 (2018) 650–655 [CrossRef] [Google Scholar]
  78. C. Tan, K. Zhou, W. Ma, L. Min, Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des. 155 (2018) 77–85 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.