Open Access
Review
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 40
Number of page(s) 18
DOI https://doi.org/10.1051/mfreview/2020036
Published online 24 December 2020
  1. R. Humberto et al., Comparing mechanical behaviour of aluminium welds produced by laser beam welding (LBW), friction stir welding (FSW), and riveting for aeronautical structures, Weld. Int. 30 (2016) 497–503 [CrossRef] [Google Scholar]
  2. J.L. Rumpf, The ultimate strength of bolted connections, PhD Thesis, Lehigh University, 1960 [Google Scholar]
  3. S. Pantelakis, K.I. Tserpes, Adhesive bonding of composite aircraft structures: challenges and recent developments, Sci. China Phys. Mech. Astron. 57 (2014) 2–11 [CrossRef] [Google Scholar]
  4. X. He, A review of finite element analysis of adhesively bonded joints, Int. J. Adhes. Adhes. 31 (2011) 248–264 [CrossRef] [Google Scholar]
  5. A. Higgins, Adhesive bonding of aircraft structures, Int. J. Adhes. Adhes. 20 (2000) 367–376 [CrossRef] [Google Scholar]
  6. N. Chowdhury, W.K. Chiu, J. Wang, P. Chang, Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures, Compos. Struct. 121 (2015) 315–323 [CrossRef] [Google Scholar]
  7. A. Atre, A finite element and experimental investigation on the fatigue of riveted lap joints in aircraft applications. PhD Thesis, Georgia Institute of Technology, 2006 [Google Scholar]
  8. V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, Electromagnetic forming—a review, J. Mater. Process. Technol. 211 (2011) 787–829 [CrossRef] [Google Scholar]
  9. Q. Collette, Riveted connections in historical metal structures (1840-1940) PhD Thesis, Vrije Universiteit Brussel, 2014 [Google Scholar]
  10. R.D. Mott, Effect of panel inertia and stiffness on rivet formation rate during percussive riveting, MASc Thesis, University of Washington, 2018 [Google Scholar]
  11. S. Behrning, H. Bley, S. Joergens, Innovative high-performance process for dry manufacturing of sheet metal armatures and their integrated on-line cleanliness examination, J. Mater. Process. Technol. 115 (2001) 25–30 [CrossRef] [Google Scholar]
  12. Y. Zuo, Z. Cao, L. Yang, C. Zang, Interfrence-fit evenness riveting method based on symmetrical loading, Acta Aeronatica Astronaut. Sin. 37 (2016) 1049–1059 [Google Scholar]
  13. Z. Cao, M. Cardew-Hall, Interference-fit riveting technique in fiber composite laminates, Aerosp. Sci. Technol. 10 (2006) 327–330 [CrossRef] [Google Scholar]
  14. E.E. Brown, O.F. Streatham, Metal spar or girder for aircraft, 1920 [Google Scholar]
  15. W. Tian, Z. Zhou, W. Liao, Analysis and investigation of a rivet feeding tube in an aircraft automatic drilling and riveting system, Int. J. Adv. Manuf. Technol. 82 (2016) 973–983 [CrossRef] [Google Scholar]
  16. Z. Cao, Y. Zuo, Electromagnetic riveting technique and its applications, Chinese J. Aeronaut. 33 (2020) 5–15 [CrossRef] [Google Scholar]
  17. C. Lei, Y. Bi, J. Li, Y. Ke, Effect of riveting parameters on the quality of riveted aircraft structures with slug rivet, Adv. Mech. Eng. 9 (2017) 1–12 [Google Scholar]
  18. X. Zhang, H.P. Yu, J. Li, C.F. Li, Microstructure investigation and mechanical property analysis in electromagnetic riveting, Int. J. Adv. Manuf. Technol. 78 (2015) 613–623 [CrossRef] [Google Scholar]
  19. M. RPG, An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints, PhD Thesis, Delft University of technology, 1995 [Google Scholar]
  20. W.J. Slagter, Static strength of riveted joints in fibre metal laminates, PhD Thesis, Delft University of Technonloy, 1994 [Google Scholar]
  21. P.M.S.T. de Castro, P.F.P. de Matos, P.M.G.P. Moreira, L.F.M. da Silva, An overview on fatigue analysis of aeronautical structural details: open hole, single rivet lap-joint, and lap-joint panel, Mater. Sci. Eng. A 468–470 (2007) 144–157 [CrossRef] [Google Scholar]
  22. A. Skorupa, M. Skorupa, Riveted Lap Joints in Aircraft Fuselage: Design, Analysis and Properties. Springer Science, London and Business Media Dordrecht, Dordrecht, 2012 [CrossRef] [Google Scholar]
  23. de R. JJM, Stress analysis of fatigue cracks in mechanically fastened joints, PhD Thesis, Delft University of Technology, 2005 [Google Scholar]
  24. H. Huan, M. Liu, Effects of squeeze force on static behavior of riveted lap joints, Adv. Mech. Eng. 9 (2017) 1–13 [CrossRef] [Google Scholar]
  25. C. Dechwayukul, C.A. Rubin, G.T. Hahn, Analysis of the effects of thin sealant layers introduction, AIAA J. 41 (2003) 2216–2228 [CrossRef] [Google Scholar]
  26. P. Linde, H. de Boer, Modelling of inter-rivet buckling of hybrid composites, Compos. Struct. 73 (2006) 221–228 [CrossRef] [Google Scholar]
  27. G. Harish, T. Farris, An integrated approach for prediction of fretting crack nucleation in riveted lap joints, 40th Struct. Struct. Dyn. Mater. Conf. Exhib. (1999) 1219–1226 [Google Scholar]
  28. A. Skorupa, M. Skorupa, T. Machniewicz, A. Korbel, Fatigue crack location and fatigue life for riveted lap joints in aircraft fuselage, Int. J. Fatigue 58 (2014) 209–217 [CrossRef] [Google Scholar]
  29. C.D. Rans, The role of rivet installation on the fatigue performance of riveted lap joints, PhD Thesis, Carleton University, 2007 [Google Scholar]
  30. M. Skorupa, T. Machniewicz, A. Skorupa, J. Schijve, A. Korbel, Fatigue life prediction model for riveted lap joints, Eng. Fail. Anal. 53 (2015) 111–123 [CrossRef] [Google Scholar]
  31. M. Skorupa, T. Machniewicz, A. Skorupa, A. Korbel, Fatigue life predictions for riveted lap joints, Int. J. Fatigue 94 (2017) 41–57 [CrossRef] [Google Scholar]
  32. Y. Tong, L. Qu, Recent patents in riveting and applications, Recent Patents Eng. 3 (2009) 220–227 [CrossRef] [Google Scholar]
  33. C. Lei, Y. Bi, J. Li, Y. Ke, Slug rivet assembly modeling and effects of procedure parameters on the quality of riveted lap joints, Adv. Mech. Eng. 10 (2018) 1–12 [Google Scholar]
  34. J. Cui, L. Qi, H. Jiang, G. Li, X. Zhang, Numerical and experimental investigations in electromagnetic riveting with different rivet dies, Int. J. Mater. Form. 11 (2018) 839–853 [CrossRef] [Google Scholar]
  35. B. Zhou et al.,Experimental investigation and finite element analysis on fatigue behavior of aluminum alloy 7050 single-lap joints, J. Mater. Eng. Perform. 27 (2018) 915–923 [CrossRef] [Google Scholar]
  36. B.E. and M.A. Sc, The Role of Rivet Installation on the Fatigue Performance of Riveted Lap Joints, no. August. 2007 [Google Scholar]
  37. C. Zeng, W.H. Liao, W. Tian, Influence of initial fit tolerance and squeeze force on the residual stress in a riveted lap joint, Int. J. Adv. Manuf. Technol. 81 (2015) 1643–1656 [CrossRef] [Google Scholar]
  38. M. Skorupa, T. Machniewicz, A. Skorupa, A. Korbel, Fatigue strength reduction factors at rivet holes for aircraft fuselage lap joints, Int. J. Fatigue 80 (2015) 417–425 [CrossRef] [Google Scholar]
  39. A. Brown, An examination of faying surface fretting in single lap splices, PhD Thesis, Carleton University, 2008 [Google Scholar]
  40. M.P. Szolwinski, The mechanics and tribology of fretting fatigue with application to riveted lap joints, PhD Thesis, Purdueuniversity, 1998 [Google Scholar]
  41. R.L. Ribeiro, M.R. Hill, Residual stress from cold expansion of fastener holes: measurement, eigenstrain, and process finite element modeling, J. Eng. Mater. Technol. (2017) [Google Scholar]
  42. M. Skorupa, T. MacHniewicz, A. Skorupa, A. Korbel, Effect of load transfer by friction on the fatigue behaviour of riveted lap joints, Int. J. Fatigue 90 (2016) 1–11 [CrossRef] [Google Scholar]
  43. A. Manes, M. Giglio, F. Vigan, Effect of riveting process parameters on the local stress field of a T-joint, Int. J. Mech. Sci. 53 (2011) 1039–1049 [CrossRef] [Google Scholar]
  44. Q.M. Li, R.A.W. Mines, R.S. Birch, Static and dynamic behaviour of composite riveted joints in tension, Int. J. Mech. Sci. 43 (2001) 1591–1610 [CrossRef] [Google Scholar]
  45. M. Skorupa, A. Korbel, A. Skorupa, T. Machniewicz, Observations and analyses of secondary bending for riveted lap joints, Int. J. Fatigue 72 (2015) 1–10 [CrossRef] [Google Scholar]
  46. H. Wang, Riveting sequence study of horizontal stabilizer assembly using finite-element analysis and riveting equivalent unit, J. Aerosp. Eng. 27 (2014) 04014040 [CrossRef] [Google Scholar]
  47. G.F. Abdelal, G. Georgiou, J. Cooper, A. Robotham, A. Levers, P. Lunt, Numerical and experimental investigation of aircraft panel deformations during riveting process, J. Manuf. Sci. Eng. 137 (2015) 011009 [CrossRef] [Google Scholar]
  48. J. Schijve, G. Campoli, A. Monaco, Fatigue of structures and secondary bending in structural elements, Int. J. Fatigue 31 (2009) 1111–1123 [CrossRef] [Google Scholar]
  49. D.A. Cope, T.E. Lacy, Modeling mechanical fasteners in single-shear lap joints, J. Aircr. 41 (2004) 1491–1497 [CrossRef] [Google Scholar]
  50. P.I. Hurricks, The mechanism of fretting—a review, Wear 15 (1970) 389–409 [CrossRef] [Google Scholar]
  51. K. Iyer, G.T. Hahn, P.C. Bastias, C.A. Rubin, Analysis of fretting conditions in pinned connections, Wear 181–183 (1995) 524–530 [CrossRef] [Google Scholar]
  52. K. Iyer, C.A. Rubin, G.T. Hahn, Influence of interference and clamping on fretting fatigue in single rivet-row lap joints, J. Tribol. 123 (2001) 686 [CrossRef] [Google Scholar]
  53. S. Piascik, A. Willard, The characterization of widespread fatigue damage in fuselage structure, 1994 [Google Scholar]
  54. R. Guo, R.C. Duan, G. Mesmacque, L. Zhang, A. Amrouche, R. Guo, Fretting fatigue behavior of riveted Al 6XXX components, Mater. Sci. Eng. A 483–484 (2008) 398–401 [CrossRef] [Google Scholar]
  55. H. Ganapathy, T.N. Farris, Modeling of skin/rivet contact: application to fretting fatigue, Am. Inst. Aeronaut. Astronaut. 4 (1997) 2761–2771 [Google Scholar]
  56. K.D. Van, N. Maouche, An analysis of fretting-fatigue failure combined with numerical calculations to predict crack nucleation, Wear 181–183 (1995) 101–111 [Google Scholar]
  57. T. Sadowski, P. Golewski, Damage and failure processes of hybrid joints: Adhesive bonded aluminium plates reinforced by rivets, Comput. Mater. Sci. 50 (2011) 1256–1262 [CrossRef] [Google Scholar]
  58. E. Armentani, R. Citarella, DBEM and FEM analysis on non-linear multiple crack propagation in an aeronautic doubler-skin assembly, Int. J. Fatigue 28 (2006) 598–608 [CrossRef] [Google Scholar]
  59. S.P. Chaudhari, Comparison of static analysis of bonded, riveted and hybrid joints by using different materials, Int. J. Innov. Res. Sci. Technol. 4 (2018) 55–63 [Google Scholar]
  60. S. Pitta, V. de la Mora Carles, F. Roure, D. Crespo, J.I. Rojas, On the static strength of aluminium and carbon fibre aircraft lap joint repairs, Compos. Struct. 201 (2018) 276–290 [CrossRef] [Google Scholar]
  61. M. Saadat, R. Sim, F. Najafi, Modelling and analysis of Airbus wingbox assembly, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222 (2008) 701–709 [CrossRef] [Google Scholar]
  62. X. Zhang, M. Zhang, L. Sun, C. Li, Numerical simulation and experimental investigations on TA1 titanium alloy rivet in electromagnetic riveting, Arch. Civ. Mech. Eng. 18 (2018) 887–901 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.