Open Access
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 1
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2023014
Published online 04 January 2024
  1. E.H. Kisi, C.J. Howard, Crystal structures of zirconia phases and their inter-relation, Key Eng. Mater. 153–154 (1998) 1–36 [CrossRef] [Google Scholar]
  2. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Sulfur doping effect on the electronic properties of zirconium dioxide ZrO2, Mater. Sci. Eng. B, 270 (2021) 115200 [CrossRef] [Google Scholar]
  3. H.C. Madhusudhana, S.N. Shobhadevi, B.M. Nagabhushana, R. Hari Krishna, M.V. Murugendrappa, H. Nagabhushana, Structural characterization and dielectric studies of Gd doped ZrO2 nano crystals synthesized by solution combustion method, Mater. Today Proc. 5 (2018) 21195–21204 [CrossRef] [Google Scholar]
  4. W. Fan et al., Microstructural design and thermal cycling performance of a novel layer-gradient nanostructured Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coating, J. Alloys Compd. 829 (2020) 154525 [CrossRef] [Google Scholar]
  5. S.J. Hao, C. Wang, T. Le Liu, Z.M. Mao, Z.Q. Mao, J.L. Wang, Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell, Int. J. Hydrogen Energy 42 (2017) 29949–29959 [CrossRef] [Google Scholar]
  6. N. Miura, T. Sato, S.A. Anggraini, H. Ikeda, S. Zhuiykov, A review of mixed-potential type zirconia-based gas sensors, Ionics (Kiel). 20 (2014) 901–925 [CrossRef] [Google Scholar]
  7. E.I. Kauppi, K. Honkala, A.O.I. Krause, J.M. Kanervo, L. Lefferts, ZrO2 acting as a redox catalyst, Top. Catal. 59 (2016) 823–832 [CrossRef] [Google Scholar]
  8. A. Savin et al., Monitoring techniques of cerium stabilized zirconia for medical prosthesis, Appl. Sci. 5 (2015) 1665–1682 [CrossRef] [Google Scholar]
  9. R. Huang et al., Compliance-free ZrO2/ZrO2 − x/ZrO2 resistive memory with controllable interfacial multistate switching behavior, Nanoscale Res. Lett. 12 384 (2017) [Google Scholar]
  10. S. Saridag, O. Tak, G. Alniacik, Basic properties and types of zirconia: an overview, http://www.wjgnet.com/, World j. stomatol. 2 (2013) 40–47 [Google Scholar]
  11. R.R. Piticescu et al., Hydrothermal synthesis of nanocrystalline ZrO2-8Y2O3-xLn2O3 powders (Ln = La, Gd, Nd, Sm): crystalline structure, thermal and dielectric properties, Mater. 14 (2021) 7432 [Google Scholar]
  12. The secrets of Zirconia ceramic bearings, toughness. https://www.lyrabearing.com/en/blog/secrets-of-zirconia-ceramic-bearings-toughness (accessed Mar. 15, 2023). [Google Scholar]
  13. M. Bahamirian, S.M.M. Hadavi, M. Farvizi, M.R. Rahimipour, A. Keyvani, Phase stability of ZrO2 9. 5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications, Ceram. Int. 45 (2019) 7344–7350 [CrossRef] [Google Scholar]
  14. Z. Zakaria, S.H. Abu Hassan, N. Shaari, A.Z. Yahaya, Y. Boon Kar, A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation, Int. J. Energy Res. 44 (2020) 631–650 [CrossRef] [Google Scholar]
  15. S.A. Ali, S. Karthigeyan, M. Deivanai, R. Ma, Ziconia: properties and application — a review, Pakistan Oral Dent. J. 34 (2014) 178–183 [Google Scholar]
  16. M. Raza, Ph. D. Thesis Oxygen vacancy stabilized zirconia; synthesis and properties, 2017 [Google Scholar]
  17. R. Flesner, Modeling of solid oxide fuel cell functionally graded electrodes and a feasibility study of fabrication techniques for functionally graded electrodes, 2009 [Google Scholar]
  18. K. P, S. BM, W. BN, R. PVB, Review on different components of solid oxide fuel cells, J. Powder Metall. Min. 6 (2017) 1–4 [Google Scholar]
  19. H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Prog. Nat. Sci. Mater. Int. 30 (2020) 764–774 [CrossRef] [Google Scholar]
  20. M.Z. Khan et al., Flat-tubular solid oxide fuel cells and stacks: a review, https://doi.org/10. 1080 /21870764.2021.1920135, J. Asian Ceram. Soc. 9 745-770 (2021) [Google Scholar]
  21. J. Wang, M. Guo, M. Liu, X. Wei, Long-term outlook for global rare earth production, Resour. Policy 65 (2020) 101569 [CrossRef] [Google Scholar]
  22. A. Elleuch, K. Halouani, Y. Li, Exploration of complex electrochemical and chemo-mechanical behavior of solid oxide fuel cell fueled with pyrolysis bio-oil, Fuel Cells 18 (2018) 206–218 [CrossRef] [Google Scholar]
  23. M. Irshad et al., A brief description of high temperature solid oxide fuel cell's operation, materials, design, fabrication technologies and performance, Appl. Sci. 6 (2016) 75 [CrossRef] [Google Scholar]
  24. M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Rational SOFC material design: new advances and tools, Mater. Today 14 (2011) 534–546 [CrossRef] [Google Scholar]
  25. M. Peksen, A. Al-Masri, R. Peters, L. Blum, D. Stolten. Recent Developments in 3D Multiphysics Modelling of Whole Fuel Cell Systems for Assisting Commercialisation and Improved Reliability. ECS Trans. 75 (2017) 15–22. [Google Scholar]
  26. D. Saebea, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, Performance evaluation of low-temperature solid oxide fuel cells with SDC-based electrolyte, Chem. Eng. Trans. 52 (2016) 223–228 [Google Scholar]
  27. S. Futamura et al., SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization, Int. J. Hydrogen Energy, 44 (2019) 8502–8518 [CrossRef] [Google Scholar]
  28. A. Wain-Martin et al., SOFC cathodic layers using wet powder spraying technique with self-synthesized nano powders, Int. J. Hydrogen Energy 44 (2019) 7555–7563 [CrossRef] [Google Scholar]
  29. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci. 72 (2015) 141–337 [CrossRef] [Google Scholar]
  30. S. Hussain, L. Yangping, Review of solid oxide fuel cell materials: cathode, anode, and electrolyte, Energy Transitions 4 (2020) 113–126 [CrossRef] [Google Scholar]
  31. M. Rafique et al.,Influence of low sintering temperature on BaCe0. 2Zr0.6 Y0. 2O3−δ IT-SOFC perovskite electrolyte synthesized by co-precipitation method, Mater. 15 (2022) 3585 [CrossRef] [Google Scholar]
  32. M. Mosiałek et al., Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0. 8O2-δ) for intermediate temperature SOFCs: microstructural and electrical properties, Ceram. Int. 49, 15276-15283 (2023), DOI doi: 10.1016/J.CERAMINT. 2023. 01.111 [Google Scholar]
  33. D. Panthi, N. Hedayat, Y. Du, Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes, J. Adv. Ceram. 7 (2018) 325–335 [CrossRef] [Google Scholar]
  34. A. Tarancón, Strategies for lowering solid oxide fuel cells operating temperature, Energies 2 (2009) 1130–1150 [CrossRef] [Google Scholar]
  35. Y. Yang, Y. Zhang, M. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology, Sep. Purif. Technol. 298 (2022) 121627 [CrossRef] [Google Scholar]
  36. X. Jiang, H. Huang, F.B. Prinz, S.F. Bent, Application of atomic layer deposit of platinum to solid oxide fuel cells, Chem. Mater. 20 (2008) 3897–3905 [CrossRef] [Google Scholar]
  37. Y. Liu, S. Zha, M. Liu, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD), Adv. Mater. 16 (2004) 256–260 [CrossRef] [Google Scholar]
  38. P. Gannon et al., Advanced PVD protective coatings for SOFC interconnects, Int. J. Hydrogen Energy 33 (2008) 3991–4000 [CrossRef] [Google Scholar]
  39. F. Smeacetto et al., Yttria-stabilized zirconia thin film electrolyte produced by RF sputtering for solid oxide fuel cell applications, Mater. Lett. 64 (2010) 2450–2453 [CrossRef] [Google Scholar]
  40. Y.H. Lee, H. Ren, E.A. Wu, E.E. Fullerton, Y.S. Meng, N.Q. Minh, All-sputtered, superior power density thin-film solid oxide fuel cells with a novel nanofibrous ceramic cathode, Nano Lett. 20 (2020) 2943–2949 [CrossRef] [Google Scholar]
  41. A.N. Ghita et al., Exploring the potential of rare earth element recovery from monazite, U.P.B. Sci. Bull, 85 135-146 (2023) [Google Scholar]
  42. T.M. Pique, C.J. Pérez, V.A. Alvarez, A. Vázquez, Water soluble nanocomposite films based on poly(vinyl alcohol) and chemically modified montmorillonites, J. Compos. Mater. 48 (2014) 545–553 [CrossRef] [Google Scholar]
  43. MM. Hosseini, E. Kolvari, N. Koukabi, M. Ziyaei, MA. Zolfigol, Zirconia Sulfuric Acid: An Efficient Heterogeneous Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidinones Under Solvent-Free Conditions. Catal Letters, 146 (2016)1040–1049 [Google Scholar]
  44. E.F.M. El-Zaidia, E.A. El-Shazly, H.A.M. Ali, Estimation of electrical conductivity and impedance spectroscopic of bulk CdIn2Se4 chalcogenide, J. Inorg. Organomet. Polym. Mater. 30 (2020) 2979–2986 [CrossRef] [Google Scholar]
  45. A. Bendahhou, K. Chourti, M. Loutou, S. El Barkany, M. Abou-Salama, Impact of rare earth (RE3+ = La3+, Sm3+) substitution in the a site perovskite on the structural, and electrical properties of Ba(Zr0.9Ti0.1)O3 ceramics, RSC Adv. 12 (2022) 10895–10910 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.