Open Access
Issue |
Manufacturing Rev.
Volume 11, 2024
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/mfreview/2024019 | |
Published online | 23 October 2024 |
- A.M. Hoogstrate, T. Susuzlu, B. Karpuschewski, Abrasive waterjet cutting beyond 400 MPa, in Proceedings of 2005 WJTA American Waterjet Conference, Houston, Texas, USA, 21–23 August 2005 (2005). https://www.wjta.org/images/wjta/Proceedings/Papers/2005/4A-2%20Hoogstrate.pdf [Google Scholar]
- O. Imanaka, S. Fujino, K. Shinohara, Y. Kawate, Experimental study of machining characteristics by liquid jets of high-power density up to 1018 W/vm2, in Proceedings of the first International Symposium on Jet Cutting Technology, Coventry, England, BHRA (1972) [Google Scholar]
- G.M. Krolczyk, R.W. Maruda, J.B. Krolczyk, S. Wojciechowski, M. Mia, P. Nieslony, G. Budzik, Ecological trends in machining as a key factor in sustainable production − a review, J. Clean. Prod. 218 (2019) 601–615 [CrossRef] [Google Scholar]
- N.E. Karkalos, P. Karmiris-Obratański, R. Kudelski, A.P. Markopoulos, Experimental study on the sustainability assessment of AWJ machining of Ti-6Al-4V using glass beads abrasive particles, Sustainability 13 (2021) 8917 [CrossRef] [Google Scholar]
- Y. Natarajan, P.K. Murugesan, M.K. Mohan, S.A.L.A. Khan, Abrasive water jet machining process: a state of art of review, J. Manuf. Process. 49 (2020) 271–322 [CrossRef] [Google Scholar]
- D. Doreswamy, B. Shivamurthy, D. Anjaiah, N.Y. Sharma, An investigation of abrasive water jet machining on graphite/glass/epoxy composite, Int. J. Manuf. Eng. (2015) 627218 [Google Scholar]
- D. Deepak, J.P. Davim, Multi-response optimization of process parameters in AWJ machining of hybrid GFRP composite by grey relational method, Proc. Manufact. 35 (2019) 1121–1221 [Google Scholar]
- D. Deepak, A.K. Pai, Study on abrasive water jet drilling for graphite filled glass/epoxy laminates, J. Mech. Eng. Sci. 13 (2019) 5126–5136 [CrossRef] [Google Scholar]
- P. Karmiris-Obratański, N.E. Karkalos, R. Kudelski, E.L. Papazoglou, A.P. Markopoulos, On the effect of multiple passes on kerf characteristics and efficiency of abrasive waterjet cutting, Metals 11 (2021) 74 [CrossRef] [Google Scholar]
- B.L. Mordike, T. Ebert, Magnesium: properties — applications — potential, Mater. Sci. Eng. A 302 (2001) 37–45 [CrossRef] [Google Scholar]
- M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, Magnesium alloy applications in automotive structures, JOM 60 (2008) 57–62 [CrossRef] [Google Scholar]
- M. Bamberger, G. Dehm, Trends in the development of new Mg alloys, Annu. Rev. Mater. Res. 38 (2008) 505–533 [CrossRef] [Google Scholar]
- W. Weng, A. Biesiekierski, Y. Li, M. Dargusch, C. Wen, A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys, Acta Biomater. 130 (2021) 80–97 [CrossRef] [Google Scholar]
- U. Riaz, I. Shabib, W. Haider, The current trends of Mg alloys in biomedical applications—a review, J. Biomed. Mater. Res. 107 (2018) 1970–1996 [Google Scholar]
- Tharumarajah, P. Koltun, Is there an environmental advantage of using magnesium components for light-weighting cars? J. Clean. Prod. 15 (2007) 1007–1013 [CrossRef] [Google Scholar]
- M.K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol. 39 (2008) 851–865 [CrossRef] [Google Scholar]
- M. Mitsuishi, J. Cao, P. Bártolo, D. Friedrich, D. Shih, K. Rajurkar, N. Sugita, K. Harada, Biomanufacturing, CIRP Ann. 62 (2013) 585–606 [CrossRef] [Google Scholar]
- J.F. King, Development of practical high temperature magnesium casting alloys, in Magnesium Alloys and their Applications, edited by K.U. Kainer (Wiley-VCH Verlag, 2000), pp. 14–22 [CrossRef] [Google Scholar]
- J.F. King, Technology of magnesium and magnesium alloys, in Magnesium Technology, edited by H.E. Friedrich, B.L. Mordike (Springer, Berlin, Heidelberg, 2006), pp. 219–430 [Google Scholar]
- L-J. Cao, G-R. Ma, C-C. Tang, Effects of isothermal process parameters on semisolid microstructure of Mg-8%Al-1%Si alloy, Trans. Nonferrous Met. Soc. China 22 (2012) 2364–2369 [CrossRef] [Google Scholar]
- Srinivasan, K.K. Ajithkumar, J. Swaminathan, U.T.S. Pillai, B.C. Pai, Creep behavior of AZ91 magnesium alloy, Proc. Eng. 55 (2013) 109–113 [CrossRef] [Google Scholar]
- Akyüz, A study on wear and machinability of AZ series (AZ01-AZ91) cast magnesium alloys, Kovove Mater 52 (2014) 255–262 [Google Scholar]
- Carou, E.M. Rubio, J.P. Davim, Machinability of magnesium and its alloys: a review, in Traditional Machining Processes. Materials Forming, Machining and Tribology, edited by J. Davim ( Springer, Berlin, Heidelberg, 2014), pp. 133–152 [Google Scholar]
- R. Davis, A. Singh, M.J. Jackson, R.T. Coelho, D. Prakash, C.P. Charalambous, W. Ahmed, L.R.R. Silva, A.A. Lawrence, A comprehensive review on metallic implant biomaterials and their subtractive manufacturing, Int. J. Adv. Manuf. Technol. 120 (2022) 1473–1530 [CrossRef] [Google Scholar]
- Z. Pu, J.C. Outeiro, A.C. Batista, O.W. DillonJr, D.A. Puleo, Jawahir, Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components, Int. J. Mach. Tools Manuf. 56 (2012) 17–27 [CrossRef] [Google Scholar]
- N. Zhao, J. Hou, S. Zhu, Chip ignition in research on high-speed face milling AM50A magnesium alloy, in Proceedings of 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 18 August 2011 (2011) [Google Scholar]
- F.Z. Fang, L.C. Lee, X.D. Liu, Mean flank temperature measurement in high speed dry cutting of magnesium alloy, J. Mater. Proc. Technol. 167 (2005) 119–123 [CrossRef] [Google Scholar]
- S. Bhowmick, M.J. Lukitsch, A.T. Alpas, Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60), Int. J. Mach. Tools Manuf. 50 (2010) 444–457 [CrossRef] [Google Scholar]
- A.H. Kheireddine, A.H. Ammouri, T. Lu, I.S. Jawahir, R.F. Hamade, An FEM analysis with experimental validation to study the hardness of in-process cryogenically cooled drilled holes in Mg AZ31b, Proc. CIRP 8 (2013) 588–593 [CrossRef] [Google Scholar]
- F. Klocke, M. Schwade, A. Klink, D. Veselovac, A. Kopp, Influence of electro discharge machining of biodegradable magnesium on the biocompatibility, Proc. CIRP 5 (2013) 88–93 [CrossRef] [Google Scholar]
- H.K. Tönshoff, J. Winkler, The influence of tool coatings in machining of magnesium, Surf. Coat. Technol. 94–95 (1997) 610–616 [CrossRef] [Google Scholar]
- L.D.K. Catherine, D.A. Hamid, Mechanical properties and machinability of magnesium alloy AZ31 and AZ91-a comparative review, in Proceedings of International Colloquium on Computational & Experimental Mechanics (ICCEM 2020), Shah Alam, and Selangor, Malaysia, 25–26 June 2020 (2020) [Google Scholar]
- Zagórski, M. Kłonica, M. Kulisz, K. Łoza, Effect of the AWJM method on the machined surface layer of AZ91D magnesium alloy and simulation of roughness parameters using neural networks, Materials 11 (2018) 2111 [CrossRef] [Google Scholar]
- C.A. Niranjan, S. Srinivas, M. Ramachandra, Effect of process parameters on depth of penetration and topography of AZ91 magnesium alloy in abrasive water jet cutting, J. Magn. Alloy 6 (2018) 366–374 [CrossRef] [Google Scholar]
- K. Saptaji, M.A. Gebremariam, M.A.B.M. Azhari, Machining of biocompatible materials: a reviewm, Int. J. Adv. Manuf. Technol. 97 (2018) 2255–2292 [CrossRef] [Google Scholar]
- Y-L. Cheng, T-W. Qin, H-M. Wang, Z. Zhang, Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys, Trans. Nonferrous Met. Soc. China 19 (2009) 517–524 [Google Scholar]
- J.A. Gonsalves, S.N. Nayak, G. Bolar, Experimental investigation on the performance of helical milling for hole processing in AZ31 magnesium alloy, J. King Saud Univ. Eng. Sci. 34 (2022) 366–374 [Google Scholar]
- R. Adhikari, G. Bolar, R. Shanmugam, U. Koklu, Machinability and surface integrity investigation during helical hole milling in AZ31 magnesium alloy, Int. J. Lightweight Mater. Manuf. (2022), https://doi.org/10.1016/j.ijlmm.2022.09.006 [Google Scholar]
- H. Majumder, K. Maity, Prediction and optimization of surface roughness and micro-hardness using grnn and MOORA fuzzy − a MCDM approach for nitinol in WEDM, Measurement 118 (2018) 1–13 [CrossRef] [Google Scholar]
- M. Sedlaček, B. Podgornik, J. Vižintin, Influence of surface preparation on roughness parameters, friction and wear, Wear 266 (2009) 482–487 [Google Scholar]
- M.R. Munhoz, L.G. Dias, R. Breganon, F.S.F. Ribeiro, J.F.D. Goncalves, E.M. Hashimoto, C.E.D. Junior, Analysis of the surface roughness obtained by the abrasive flow machining process using an abrasive paste with oiticica oil, Int. J. Adv. Manufactur. Technol. 106 (2020) 5061–5070 [CrossRef] [Google Scholar]
- K. Mermerdaş, M.M. Arbili, Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash, Constr. Build. Mater. 94 (2015) 371–379 [CrossRef] [Google Scholar]
- A.M. Lawal, An artificial neural network-based mathematical model for the prediction of blast-induced ground vibration in granite quarries in Ibadan, Oyo State, Nigeria, Scient. Afr. 8 (2020) e00413 [Google Scholar]
- M. Hammouda, M. Ghienne, J.-C. Dion, N.B. Yahia, Linear regression and artificial neural network models for predicting abrasive water jet marble drilling quality, Adv. Mech. Eng. 14 (2022) 9 [CrossRef] [Google Scholar]
- Kuttan, R. Rajesh, M.D. Anand, Abrasive water jet machining techniques and parameters: a state of the art, open issue challenges and research directions, J. Brazilian Soc. Mech. Sci. Eng. (2021) 43 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.