Open Access
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 23
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2024022
Published online 24 December 2024
  1. S.S. Li, X. Yue, Q.Y. Li, H.L. Peng, B.X. Dong, T.S. Liu, H.Y. Yang, J. Fan, S.L. Shu, F. Qiu, Q.C. Jiang, Development and applications of aluminum alloys for aerospace industry, J. Mater. Res. Technol. 30 (2023) 944–983 [Google Scholar]
  2. Y.D. Ye, X.P. Li, Z.Y. Sun, H.B. Wang, G.Y. Tang, Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process, Acta Metall. Sin. 30 (2018) 44–52 [Google Scholar]
  3. P.F. Sun, S.G. Qu, C.F. Duan, X.F. Hu, XQ. Li, Improving the high cycle fatigue property of Ti6Al4V ELI alloy by optimizing the surface integrity through electric pulse combined with ultrasonic surface rolling process, J. Mater. Sci. Technol. 170 (2024) 103–121 [CrossRef] [Google Scholar]
  4. T. Wang, D.P. Wang, G. Liu, B.M. Gong, N.X. Song, Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing, Appl. Surf. Sci. 255 (2008) 1824–1829 [CrossRef] [Google Scholar]
  5. D. Liu, D.X. Liu, X.H. Zhang, A. Ma, C.S. Liu, Microstructural evolution mechanisms in rolled 17-4PH steel processed by ultrasonic surface rolling process, Mater. Sci. Eng. A 773 (2020) 138720 [CrossRef] [Google Scholar]
  6. X.C. Xu, D.X. Liu, X.H. Zhang, C.S. Liu, D. Liu, Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling, J. Mater. Sci. Technol. 30 (2020) 88–98 [Google Scholar]
  7. C.S. Liu, D.X. Liu, X.H. Zhang, D. Liu, A. Ma, N. Ao, X.C. Xu, Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process, J. Mater. Sci. Technol. 30 (2019) 1555–1562 [CrossRef] [Google Scholar]
  8. H. Ye, X. Sun, Y. Liu, X.X. Rao, Q. Gu, Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy, Surf. Coat. Technol. 372 (2019) 288–298 [CrossRef] [Google Scholar]
  9. Z.Q. Cui, Y.J. Mi, D. Qiu, P. Dong, Z. Qin, D.Q. Gong, W.G. Li, Microstructure and mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloys after ultrasonic surface rolling process, J. Alloys Compd. 887 (2021) 161393 [CrossRef] [Google Scholar]
  10. J. Yang, D.X. Liu, X.H. Zhang, M.X. Liu, W.D. Zhao, C.S. Liu, The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy, Int. J. Fatigue 133 (2020) 105373 [CrossRef] [Google Scholar]
  11. X. Luo, X.P. Ren, Q. Jin, H.T. Qu, H.L. Hou, Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy, J. Mater. Res. Technol. 30 (2021) 1586–1598 [CrossRef] [Google Scholar]
  12. M. John, A.M. Ralls, S.C. Dooley, A.K.V. Thazhathidathil, A.K. Perka, U.B. Kuruveri, P.L. Menezes, Ultrasonic surface rolling process: properties, characterization, and applications, Appl. Sci. 30 (2021) 10986 [CrossRef] [Google Scholar]
  13. J. Pegues, M. Roach, R. Scott Williamson, N. Shamsaei, Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V, Int. J. Fatigue 116 (2018) 543–552 [CrossRef] [Google Scholar]
  14. L. Lei, Q.Y. Zhao, Y.Q. Zhao, C. Wu, S.X. Huang, W.J. Jia, W.D. Zeng, Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling, J. Mater. Process. Technol. 30 (2022) 117322 [CrossRef] [Google Scholar]
  15. L. Tan, D.H. Zhang, C.F. Yao, J.X. Ren, Effects of ultrasonic surface rolling parameters on surface integrity of TC17 alloy, J. Mater. Eng. Performance 30 (2019) 6736–6745 [Google Scholar]
  16. M. Yang, L. Lei, Y. Jiang, F.H. Xu, C.H. Yin, Simultaneously improving tensile properties and stress corrosion cracking resistance of 7075-T6 aluminum alloy by USRP treatment, Corros. Sci. 218 (2023) 111211 [CrossRef] [Google Scholar]
  17. A.I. Dekhtyar, B.N. Mordyuk, D.G. Savvakin, V.I. Bondarchuk, I.V. Moiseeva, N.I. Khripta, Enhanced fatigue behavior of power metallurgy Ti-6Al-4V alloy by applying ultrasonic impact treatment, Mater. Sci. Eng. A 641 (2015) 348–359 [CrossRef] [Google Scholar]
  18. Q. Sun, M. Yang, Y. Jiang, L. Lei, Y. Zhang, Achieving excellent corrosion resistance properties of 7075 Al alloy via ultrasonic surface rolling treatment, J. Alloys Compd. 911 (2022) 165009 [CrossRef] [Google Scholar]
  19. J.X. Zheng, Y.J. Shang, Y.L. Guo, H.L. Deng, L.Y. Jia, Analytical model of residual stress in ultrasonic rolling of 7075 aluminum alloy, J. Manufactur. Process. 30 (2022) 132–140 [CrossRef] [Google Scholar]
  20. R. Teimouri, S. Amini, Analytical modeling of ultrasonic surface burnishing process: evaluation of through depth localized strain, Int. J. Mech. Sci. 151 (2019) 118–132 [CrossRef] [Google Scholar]
  21. R. Teimouri, S. Amini, Analytical modeling of ultrasonic burnishing process: evaluation of active forces, Measurement 131 (2019) 654–663 [CrossRef] [Google Scholar]
  22. L.X. Zhu, J.X. Zheng, Y.L. Guo, H.L. Deng, Y.J. Shang, Surface topography in two-dimensional ultrasonic rolling 2024-T3 Al-alloy, J. Manufactur. Process. 30 (2022) 588–597 [CrossRef] [Google Scholar]
  23. K.M. Zhang, J. Wang, Y.X. Liu, S. Liu, X.C. Zhang, Active and passive compliant force control of ultrasonic surface rolling process on a curved surface, Chin. J. Aeronautics 30 (2022) 289–299 [CrossRef] [Google Scholar]
  24. F. Blaha, B. Langenecker, Tensile deformation of zinc crystal under ultrasonic vibration, Sci. Nat. 30 (1955) 556 [CrossRef] [Google Scholar]
  25. S.L. Li, Y.X. Zhao, Z.Q. Yu, Acoustoplastic mechanism and its application in plastic processing, J. Plasticity Eng. 30 (2023) 8–34 [Google Scholar]
  26. H. Storck, W. Littmann, J. Wallaschek, M. Mracek, The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors, Ultrasonics 30 (2002) 379–383 [CrossRef] [Google Scholar]
  27. V.C. Kumar, I.M. Hutchings, Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration, Tribol. Int. 30 (2004) 833–840 [CrossRef] [Google Scholar]
  28. J. Hu, T. Shimizu, M. Yang, Investigation on ultrasonic volume effects: stress superposition, acoustic softening and dynamic impact, Ultrasonics Sonochem. 30 (2018) 240–248 [CrossRef] [Google Scholar]
  29. H.O.K. Kirchner, W.K. Kromp, F.B. Prinz, P. Trimmel, Plastic deformation under simultaneous cyclic and unidirectional loading at low and ultrasonic frequencies, Mater. Sci. Eng. 30 (1985) 197–206 [CrossRef] [Google Scholar]
  30. J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, M. Yang, Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests, J. Mater. Process. Technol. 258 (2018) 144–154 [CrossRef] [Google Scholar]
  31. B. Langenecker, Effects of ultrasound on deformation characteristics of metals, IEEE Trans. Son. Ultrasonics 30 (2005) 1–8 [Google Scholar]
  32. A. Siddiq, T. El Sayed, Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM, Mater. Lett. 30 (2011) 356–359 [CrossRef] [Google Scholar]
  33. Y. Bai, M. Yang, Optimization of metal foils surface finishing using vibration-assisted micro-forging, J. Mater. Process. Technol. 214 (2014) 21–28 [CrossRef] [Google Scholar]
  34. L. Yang, Study on sever plastic deformation behavior of thin metals under ultrasonic effect. Anhui Polytechnic University (2020) [Google Scholar]
  35. M.L. Cheng, D.Y. Zhang, H.W. Chen, W. Qin, Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread, J. Mater. Process. Technol. 214 (2014) 2395–2401 [CrossRef] [Google Scholar]
  36. A.I. Bozdana, N.N.Z. Gindy, Comparative experimental study on effects of conventional and ultrasonic deep cold rolling process on Ti6Al4V, Mater. Sci. Technol. 30 (2008) 1378–1384 [CrossRef] [Google Scholar]
  37. P.C. Huang, Y.S. Wang, J.H. Lin, Y.J. Cheng, F.Z. Liu, Q.G. Qiu, Effect of ultrasonic rolling on surface integrity, machining accuracy, and tribological performance of bearing steels under different process schemes, J. Manufactur. Sci. Technol. 30 (2023) 143–157 [CrossRef] [Google Scholar]
  38. Z. Liu, M. Yang, J. Deng, M. Zhang, Q. Dai, A predictive approach to investigating effects of ultrasonic-assisted burnishing process on surface performances of shaft targets, Int. J. Adv. Manufactur. Technol. 106 (2020) 4203–4219 [CrossRef] [Google Scholar]
  39. J. Zhao, Z.Q. Liu, Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti-6Al-4V, Mater. Des. 107 (2016) 238–249 [CrossRef] [Google Scholar]
  40. R. Teimouri, S. Skoczypiec, Theoretical study including physic-based material model to identify underlying effect of vibration amplitude on residual stress distribution of ultrasonic burnishing process, J. Manufactur. Process. 30 (2022) 116–131 [CrossRef] [Google Scholar]
  41. S. Bagherifard, R. Ghelichi, M. Guagliano, A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material, Surf. Coat. Technol. 204 (2010) 4081–4090 [CrossRef] [Google Scholar]
  42. Y. Liu, L.J. Wang, D.P. Wang, Finite element modeling of ultrasonic surface rolling process, J. Mater. Process. Technol. 211 (2011) 2106–2113 [CrossRef] [Google Scholar]
  43. M. Razi, S. Shahraki, R. Teimouri, Numerical study of optimized processing condition in rolling strike ultrasonic nanocrystalline surface modification of copper, Int. J. Lightweight Mater. Manufact. 3 (2020) 160–171 [Google Scholar]
  44. Z.Q. Zhang, Z.L. Jiang, Q.Y. Wei, Dynamic mechanical properties and constitutive equations of 2219 aluminum alloy, J. Mater. Eng. 30 (2017) 45–51 [CrossRef] [Google Scholar]
  45. Y. Liu, X. Zhao, D. Wang, Effective FE model to predict surface layer characteristics of ultrasonic surface rolling with experimental validation, Mater. Sci. Technol. 30 (2014) 627–636 [CrossRef] [Google Scholar]
  46. W. Feng, Study on Residual Stress and Surface Properties of TC4 Titanium Alloy by Ultrasonic Rolling[D. University of Jinan (2020) [Google Scholar]
  47. J.Y. Tang, Y. Shi, J.Y. Zhao, L.W. Chen, Z.Y. Wu, Numerical modeling considering initial gradient mechanical properties and experiment verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by ultrasonic surface rolling, Surf. Coat. Technol. 452 (2023) 129127 [CrossRef] [Google Scholar]
  48. M. Zhang, J. Deng, Z.H. Liu, Y. Zhou, Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling, Int. J. Mech. Sci. 2019 (2019) 163 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.