Issue |
Manufacturing Rev.
Volume 8, 2021
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/mfreview/2021026 | |
Published online | 17 November 2021 |
Research Article
Business model and methods of evaluation in sustainable manufacturing
Faculty of Technology, University of Sunderland, Sunderland SR6 0DD, UK
* e-mail: haishang.wu@research.sunderland.ac.uk
Received:
25
August
2021
Accepted:
13
October
2021
Additive manufacturing (AM) enables cost-effective and efficient production toward sustainability. However, a rigorous evaluation method is required to further investigate the measurement method and efficiency before AM can be well-positioned in sustainable manufacturing and become the industry mainstream. Cost savings play a key role in the manufacturing industry. Compared to conventional manufacturing (CM), the cost of AM is volume-independent. In contrast, CM production requires a certain volume to share the initial tooling costs to achieve cost reduction. This constraint limits CM from service on demand and leaves ambiguity in the threshold setting of that critical batch volume. In addition, the invisibility of AM advantages in cost factors blocks AM technologies from appropriate processes and affects its applications. To address these issues, this paper proposes a business model. The major issues encountered by AM are the scaling, speed, and size of products. The enhancement of cost modeling and addressing speed, scale, and size issues are the novelties of this study and provide a breakthrough in AM issues. Generic equations are derived using the convergence effect and cost–volume intersection calculation between AM and CM. Furthermore, the divide-and-conquer approach is proposed to support scaling factors and dependencies for both AM and CM. Consequently, appropriate AM technologies can be compared with the CM convergence threshold to contribute to decision-making. Next, the advantages and weaknesses of AM are identified, and a collaboration pattern is proposed to connect large enterprises, small-and medium-sized enterprises, and home-based manufacturers into an AM society. Through this society, the advantages of AM can be fully exploited, scaling and speed issues can be addressed, and AM's dominant role in sustainable manufacturing can be made feasible.
Key words: sustainability / material recycling / collaboration / localization / standard / AM / CM / SME
© H. Wu, Published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.