Open Access
Issue
Manufacturing Rev.
Volume 2, 2015
Article Number 23
Number of page(s) 11
DOI https://doi.org/10.1051/mfreview/2015025
Published online 17 November 2015
  1. European Union (editor), EU energy in figures – statistical pocketbook 2013, DOI: 10.2833/15026. [Google Scholar]
  2. G. Reinhart, S. Teufelhart, M. Ott, J. Schilp, Potentials of generative manufactured components for gaining resource efficiency of production facilities, in: Sustainable production for resource efficiency and ecomobility. International Chemnitz manufacturing colloquium. Reports from the IWU, vol. 54, Verlag Wissenschaftliche Scripten, Auerbach, 2010, pp. 703–710. [Google Scholar]
  3. H. Helms, U. Lambrecht, et al., Energy savings by light-weighting, Final Report for the International Aluminium Institute, Institut für Energie- und Umweltforschung GmbH, Heidelberg, 2003. [Google Scholar]
  4. AUDI AG (editor), Workshop Audi A3, 2012, https://www.audi-mediaservices.com [Google Scholar]
  5. T. Lawrence, Developing vehicles to meet carbon emissions reduction targets, 2015. Online available at http://www.paconsulting.com/our-thinking/developing-vehicles-to-meet-carbon-emissions-reduction-targets/ [Google Scholar]
  6. M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, Annals of the CIRP “Manufacturing Technology”, 53rd General Assembly of CIRP 52 (2003) 521–542. [Google Scholar]
  7. L. Kroll, P. Blau, M. Wabner, U. Frieß, J. Eulitz, M. Klärner, Lightweight components for energy-efficient machine tools, CIRP Journal of Manufacturing Science and Technology 4 (2011) 148–160. [CrossRef] [Google Scholar]
  8. L. Zhao, J. Ma, T. Wang, D. Xing, Lightweight design of mechanical structures based on structural bionic methodology, Journal of Bionic Engineering 7 (2010) 224–231. [CrossRef] [Google Scholar]
  9. S. Golovashchenko, Material formability and coil design in electromagnetic forming, Journal of Materials Engineering and Performance 16 (2007) 314–320. [CrossRef] [Google Scholar]
  10. A.G.M. Michell, The limits of economy of material in frame-structures, Philosophical Magazine 8 (1904) 589–597. [Google Scholar]
  11. A. Wanner, Minimum-weight materials selection for limited available space, Materials and Design 31 (2010) 2834–2839. [CrossRef] [Google Scholar]
  12. M.A. Carruth, J.M. Allwood, M.C. Moynihan, The technical potential for reducing metal requirements through lightweight product design, Resources, Conservation and Recycling 57 (2011) 48–60. [CrossRef] [Google Scholar]
  13. G. Reinhart, S. Teufelhart, Load-adapted design of generative manufactured lattice structures, Physics Procedia 12 (2011) 385–392. [CrossRef] [Google Scholar]
  14. G.W. Harvey, D.F. Brower, Metal forming device and method, US patent 2,976,907, 1961. [Google Scholar]
  15. M. Plum, Electromagnetic forming, in: ASM Handbook “Forming and Forging” vol. 14, 1988, pp. 644–653. [Google Scholar]
  16. V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, Electromagnetic forming – a review, Journal of Materials Processing Technology 211 (2011) 787–829. [Google Scholar]
  17. M. Kleiner, C. Beerwald, W. Homberg, Analysis of process parameters and forming mechanisms within the electromagnetic forming process, CIRP Annals – Manufacturing Technology 54 (2005) 225–228. [CrossRef] [Google Scholar]
  18. J.F. Daube, Die Abhängigkeit der Durchmesseränderung elektromagnetisch umgeformter metallischer Werkstücke von Anlagen- und Werkstückparametern, Dr.-Ing.-Dissertation, Akademie der Wissenschaften der DDR, 1973. [Google Scholar]
  19. C. Beerwald, Grundlagen der Prozessauslegung und –gestaltung bei der elektromagnetischen Umformung, Dr.-Ing.-Dissertation, Technische Universität Dortmund, 2005. [Google Scholar]
  20. E. El-Magd, M. Abouridane, High speed forming of the light-weight wrought alloys, in: Proceedings of the 1st International Conference on High Speed Forming ICHSF 2004, Dortmund, 2004, pp. 3–12. Online available at https://eldorado.tu-dortmund.de/bitstream/2003/27055/1/01-el-Magd_etal-040320a.pdf [Google Scholar]
  21. S.B. Kim, H. Huh, H.H. Bok, M.B. Moon, Forming limit diagram of auto body steel sheets for high-speed sheet metal forming, Journal of Materials Processing Technology 211 (2011) 851–862. [CrossRef] [Google Scholar]
  22. S.F. Golovashchenko, Springback calibration using pulsed electromagnetic field, AIP Conference Proceedings 778 (2005) 284. [CrossRef] [Google Scholar]
  23. I.V. Belyy, S.M. Fertik, L.T. Khimenko, Spravochnik Po Magnitno-Impul’ Snoy Obrabotke Metallov [Electromagnetic metal forming handbook], 1977. English translation by M.M. Altynova, online available at http://www.mse.eng.ohio-state.edu/~Daehn/metalforminghb/index.html [Google Scholar]
  24. W. Bertholdi, J. Daube, Die elektrohydraulische und die elektromagnetische Umformung von Metallen. Urania – Gesellschaft zur Verbreitung wissenschaftlicher Kenntnisse, 1966. [Google Scholar]
  25. J. Erdösi, M. Meinel, Elektrische Hochgeschwindigkeitsbearbeitung, Fertigungstechnik und Betrieb 34 (1984) 600–601. [Google Scholar]
  26. R. Neugebauer, V. Psyk, Take the fast route with electromagnetic forming. Metalworking equipment news, May–June 2012, pp. 92–96. [Google Scholar]
  27. V. Psyk, Prozesskette Krümmen – Elektromagnetisch Komprimieren – Innenhochdruckumformen für Rohre und profilförmige Bauteile, Dr.-Ing. Dissertation, Technische Universität-Dortmund, 2010, ISBN: 978-3-8322-9026-9.0 [Google Scholar]
  28. A. Jäger, D. Risch, A.E. Tekkaya, Verfahren und Vorrichtung zum Strangpressen und nachfolgender elektromagnetischer Umformung, German patent, DE 102009039759.0, 2009. [Google Scholar]
  29. A. Jäger, D. Risch, A.E. Tekkaya, Thermo-mechanical processing of aluminum profiles by integrated electromagnetic compression subsequent to hot extrusion, 2010, DOI: 10.1016/j.jmatprotec.2010.06.016. [Google Scholar]
  30. V. Psyk, T. Lieber, P. Kurka, W.-G. Drossel, Electromagnetic joining of hybrid tubes for hydroforming, Procedia CIRP 23 (2014) 1–6. [CrossRef] [Google Scholar]
  31. V. Vohnout, A hybrid quasi-static/dynamic process for forming large sheet metal parts from aluminum alloys, Ph.D. Dissertation, Ohio State University, 1998. [Google Scholar]
  32. V. Psyk, C. Beerwald, A. Henselek, W. Homberg, A. Brosius, M. Kleiner, Integration of Electromagnetic Calibration into a Deep Drawing Process of an Industrial Demonstrator Part, Key Engineering Materials, 344 (2007) 435–442. [CrossRef] [Google Scholar]
  33. F. Taebi, O.K. Demir, M. Stiemer, V. Psyk, L. Kwiatkowski, A. Brosius, H. Blum, A.E. Tekkaya, Dynamic forming limits and numerical optimization of combined quasi-static and impulse metal forming, Computational Materials Science 54 (2012) 293–302. [CrossRef] [Google Scholar]
  34. I. Eguia, A. Mangas, R. Iturbe, M.A. Gutiérrez, Electromagnetic forming of longitudinal strengthening ribs in roll formed automotive profiles, in: Proceedings of the 4th International Conference on High Speed Forming – ICHSF 2010, Columbus, pp. 198–207, DOI: 10.17877/DE290R-12593. [Google Scholar]
  35. S. Thiruvarudchelvan, The potential role of flexible tools in metal forming, Journal of Materials Processing Technology 122 (2002) 293–300. [CrossRef] [Google Scholar]
  36. M. Fukuda, K. Yamaguchi, An Analysis for Deep Drawing of Cylindrical Shell with Rubber Die, Bulletin of The Japan Society of Mechanical Engineers 14 (1971) 1971. [Google Scholar]
  37. H.E. Guerin, Method and apparatus for cutting sheet metal, Patentschrift US 2,055,077, 1936. [Google Scholar]
  38. H.E. Guerin, Method and apparatus for forming sheet metal, Patentschrift US 2,190,659, 1940. [Google Scholar]
  39. V. Psyk, P. Kurka, S. Kimme, M. Werner, D. Landgrebe, A. Ebert, M. Schwarzendahl, Optimisation of component performance via structuring, in: 4th International Conference on New Forming Technology – ICNFT2015, Glasgow, 2015, MATEC Web of Conferences, vol. 21, 2015, p. 11001, DOI: 10.1051/matecconf/20152111001. [Google Scholar]
  40. X.H. Cui, J.H. Mo, J.J. Li, J. Zhao, Y. Zhu, L. Huang, Z.W. Li, K. Zhong, Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology, Journal of Materials Processing Technology 214 (2014) 409–427. [Google Scholar]
  41. G. Sala, A numerical and experimental approach to optimize sheet stamping technologies: part II – aluminium alloys rubber-forming, Materials and Design 22 (2001) 299–315. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.