Manufacturing Rev.
Volume 3, 2016
Special Issue - Additive Manufacturing Materials & Devices
Article Number 12
Number of page(s) 17
Published online 26 July 2016
  1. ASTM F2792-12a, Standard terminology for additive manufacturing technologies, ASTM International, West Conshohocken, PA, 2012. [Google Scholar]
  2. J.H.P. Pallari, K.W. Dalgarno, J. Woodburn, Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering, IEEE Trans. Biomed. Eng. 57 (2010) 1750–1756. [CrossRef] [Google Scholar]
  3. L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machade, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Bracke, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, J. Phil. Trans. Royal. Soc. A 368 (2010) 1999–2032. [CrossRef] [Google Scholar]
  4. M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Integrated 3D-printed reactionware for chemical synthesis and analysis, Nature Chem. 4 (2012) 349–354. [CrossRef] [Google Scholar]
  5. M. Miodownik, Robotic craft: rapid-prototype technology may take the labor out of craft, but it also allows individually styled items to compete with those that have been mass-produced, Mater. Today 9 (2006) 6. [Google Scholar]
  6. B.T. Wittbrodt, A.G. Glover, J. Laureto, G.C. Anzalone, D. Oppliger, J.L. Irwin, J.M. Pearce, Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers, Mechatronics 23 (2013) 713–726. [CrossRef] [Google Scholar]
  7. I. Campbell, D. Bourell, I. Gibson, Additive manufacturing: rapid prototyping comes of age, Rapid Prototyping J. 18 (2012) 255–258. [CrossRef] [Google Scholar]
  8. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164. [CrossRef] [Google Scholar]
  9. K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN Mech. Eng. 2012 (2012) 208760. [Google Scholar]
  10. N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers Mech. Eng. 8 (2013) 215–243. [CrossRef] [Google Scholar]
  11. H. Devaraj, J. Travas-Sejdic, R. Sharma, N. Aydemir, D. Williams, E. Haemmerle, K.C. Aw, Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs, Bioinspir. Biomim. 10 (2015) 016017. [CrossRef] [Google Scholar]
  12. G.M. Gratson, M. Xu, J.A. Lewis, Microperiodic structures: direct writing of three-dimensional webs, Nature 428 (2004) 386. [CrossRef] [PubMed] [Google Scholar]
  13. S. Wu, J. Serbin, M. Gu, Two-photon polymerisation for three-dimensional micro-fabrication, J. Photochem. Photobiol. A: Chem. 181 (2006) 1–11. [CrossRef] [Google Scholar]
  14. C. Sun, N. Fang, D.M. Wu, X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask, Sens. Actuators A: Phys. 121 (2005) 113–120. [CrossRef] [Google Scholar]
  15. N. Hopkinson, P. Dickens, Analysis of rapid manufacturing – using layer manufacturing processes for production, P. I. Mech. Eng. C J. MEC 217 (2003) 31–39. [CrossRef] [Google Scholar]
  16. C.E. Majewski, D. Oduye, H.R. Thomas, N. Hopkinson, Effect of infra-red power level on the sintering behaviour in the high speed sintering process, Rapid Prototyping J. 14 (2008) 155–160. [CrossRef] [Google Scholar]
  17. J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, J.M. DeSimone, Continuous liquid interface production of 3D objects, Science 347 (2015) 1349–1352. [CrossRef] [Google Scholar]
  18. X. Lu, S. Yang, J.R.G. Evans, Ultrasound-assisted microfeeding of fine powders, Particuology 6 (2008) 2–8. [CrossRef] [Google Scholar]
  19. A.J. Lopes, E. McDonald, R.B. Wicker, Integrating stereolithography and direct print technology for 3D structural electronics fabrication, Rapid Prototyping J. 18 (2012) 129–143. [CrossRef] [Google Scholar]
  20. S.H. Jang, S.T. Oh, I.H. Lee, H.-C. Kim, H.Y. Cho, 3-dimensional circuit device fabrication process using stereolithography and direct writing, Int. J. Precis. Eng. Manuf. 16 (2015) 1361–1367. [CrossRef] [Google Scholar]
  21. S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Bilson, D.A. Hutchins, A simple low-cost conductive material for 3D printing of electronic sensors, PLoS One 7 (2012) e49365. [CrossRef] [Google Scholar]
  22. M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesa, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, “3D printed bionic ears, Nano Lett. 13 (2013) 2634–2639. [CrossRef] [Google Scholar]
  23. I.T. Nassar, T.M. Weller, An electrically-small, 3-D cube antenna fabricated with additive manufacturing, PAWR 2013, Santa Clara, CA, 2013, pp. 91–93. [Google Scholar]
  24. C. Shemelya, F. Cedillos, E. Aguilera, D. Espalin, D. Muse, R. Wicker, E. McDonald, IEEE Sensors 15 (2015) 1280–1286. [CrossRef] [Google Scholar]
  25. C. Kim, D. Espalin, A. Cuaron, M.A. Perez, M. Lee, E. McDonald, R.B. Wicker, Cooperative tool path planning for wire embedding on additively manufactured curved surfaces using robot kinematics, J. Mech. Robot. 7 (2015) 021003. [CrossRef] [Google Scholar]
  26. E. Tekin, P.J. Smith, U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter 4 (2008) 703. [CrossRef] [Google Scholar]
  27. N. Reis, C. Ainsley, B. Derby, Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors, J. Appl. Phys. 97 (2005) 094903. [CrossRef] [Google Scholar]
  28. J. Ebert, E. Ozkol, A. Zeichner, K. Uibel, O. Weiss, U. Koops, R. Telle, H. Fischer, Direct inkjet printing of dental prostheses made of zirconia, J. Dent. Res. 88 (2009) 673–676. [CrossRef] [Google Scholar]
  29. E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Corrie, Three dimensional printing: rapid tooling and prototypes directly from a CAD model, J. Eng. Ind. 114 (1992) 481–488. [CrossRef] [Google Scholar]
  30. B.M. Wu, S.W. Borland, R.A. Giordano, L.G. Cima, E.M. Sachs, M.J. Cima, Solid free-form fabrication of drug delivery devices, J. Control. Release 40 (1996) 77–87. [CrossRef] [Google Scholar]
  31. B. Derby, Printing and prototyping of tissues and scaffolds, Science 338 (2012) 921. [CrossRef] [Google Scholar]
  32. M. Medina-Sanchez, C. Martinez-Domingo, E. Ramon, A. Merkoci, An inkjet-printed field-effect transistor for label-free biosensing, Adv. Funct. Mater. 24 (2014) 6291–6302. [CrossRef] [Google Scholar]
  33. Y. Zhang, J. Stringer, R. Grainger, P.J. Smith, A. Hodzic, Fabrication of patterned thermoplastic microphases between composite plies by inkjet printing, J. Comp. Mater. 49 (2014) 1907–1913. [CrossRef] [Google Scholar]
  34. J. Perelaar, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials, J. Mater. Chem. 20 (2010) 8446–8453. [CrossRef] [Google Scholar]
  35. Y. Zhang, C. Tse, D. Rahoulamin, P.J. Smith, Scaffolds for tissue engineering produced by inkjet printing, Cent. Eur. J. Eng. 2 (2012) 323. [Google Scholar]
  36. C.C.W. Tse, S.S. Ng, J. Stringer, S. MacNeil, J.W. Haycock, P.J. Smith, Utilising inkjet printed paraffin wax for cell patterning applications, Int. J. Bioprinting 2 (2016) 35–44. [Google Scholar]
  37. T. Boland, T. Xu, B. Damon, X. Cui, Application of Inkjet Printing to Tissue Engineering, Biotechnol. J. 1 (2006) 910. [CrossRef] [PubMed] [Google Scholar]
  38. V. Sanchez-Romaguera, M.A. Ziai, D. Oyeka, S. Barbosa, J.S.R. Wheeler, J.C. Batchelor, E.A. Parker, S.G. Yeates, Towards inkjet-printed low cost passive UHF RFID skin mounted tattoo paper tags based on silver nanoparticle tags, J. Mater. Chem. C 1 (2013) 6395. [CrossRef] [Google Scholar]
  39. S.B. Fuller, E.J. Wilhelm, J.A. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems, J. Microelectromech. Syst. 11 (2002) 54–60. [CrossRef] [Google Scholar]
  40. S.H. Eom, S. Senthilarasu, P. Uthirakumar, S.C. Yoon, J. Lim, C. Lee, H.S. Lim, J. Lee, S.-H. Lee, Polymer solar cells based on inkjet-printed PEDOT:PSS layer, Org. Electr. 10 (2009) 536. [CrossRef] [Google Scholar]
  41. H.P. Le, Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42 (1998) 49–62. [Google Scholar]
  42. D.B. Bogy, F.E. Talke, Experimental and theoretical study of wave propogation phenomena in drop-on-demand ink jet devices, IBM J. Res. Dev. 29 (1984) 314–321. [CrossRef] [Google Scholar]
  43. A.B.M. Buanz, R. Telford, I.J. Scowen, S. Gaisford, Rapid preparation of pharmaceutical co-crystals with thermal ink-jet printing, Cryst. Eng. Comm. 15 (2013) 1031–1035. [CrossRef] [Google Scholar]
  44. P.J. Smith, D.-Y. Shin, J.E. Stringer, N. Reis, B. Derby, Direct ink-jet printing and low temperature conversion of conductive silver patterns, J. Mater. Sci. 41 (2006) 4153. [CrossRef] [Google Scholar]
  45. M. Grouchko, A. Kamyshny, S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem. 19 (2009) 3057. [CrossRef] [Google Scholar]
  46. S.D. Hoath, W.-K. Hsiao, S.J. Jung, G.D. Martin, I.M. Hutchings, Drop speeds from drop-on-demand ink-jet print heads, J. Imaging Sci. Technol. 57 (2013) 010503. [CrossRef] [Google Scholar]
  47. K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, B. Derby, Ink-jet printing of wax-based alumina suspensions, J. Am. Ceram. Soc. 84 (2001) 2514–2520, DOI: 10.1111/j.1151-2916.2001.tb01045.x. [CrossRef] [Google Scholar]
  48. B.-J. de Gans, E. Kazancioglu, W. Meyer, U.S. Schubert, Ink-jet printing polymers and polymer libraries using micropipettes, Macromol. Rapid Commun. 25 (2004) 292–296, DOI: 10.1002/marc.200300148. [CrossRef] [Google Scholar]
  49. D. Xu, V. Sanchez-Romaguera, S. Barbosa, W. Travis, J. de Wit, P. Swan, S.G. Yeates, Inkjet printing of polymer solutions and the role of chain entanglement, J. Mater. Chem. 17 (2007) 4902–4907. [CrossRef] [Google Scholar]
  50. S.D. Hoath, I.M. Hutchings, G.D. Martin, T.R. Tuladhar, M.R. Mackley, D. Vadillo, Links between ink rheology, drop-on-demand jet formation, and printability, J. Imaging Sci. Technol. 53 (2009) 041208. [CrossRef] [Google Scholar]
  51. D.J. Hayes, W.R. Cox, M.E. Grove, Micro-jet printing of polymers and solder for electronics manufacturing, J. Eletron. Manu. 8 (1998) 209–216. [CrossRef] [Google Scholar]
  52. J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets, IBM J. Res. Dev. 28 (1984) 322–333. [CrossRef] [Google Scholar]
  53. D.B. van Dam, C. Le Clerc, Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Phys. Fluids 16 (2004) 3403–3414. [CrossRef] [Google Scholar]
  54. Y. Zhang, J. Stringer, R. Grainger, P.J. Smith, A. Hodzic, Improvements in carbon fibre reinforced composites by inkjet printing of thermoplastic polymer patterns, Phys. Status Solidi RRL 8 (2014) 56–60, DOI: 10.1002/pssr.201308149. [CrossRef] [Google Scholar]
  55. L. Bergstrom, Rheological properties of Al2O3-SiC whisker composite suspensions, J. Mat. Sci. 31 (1996) 5257–5270. [CrossRef] [Google Scholar]
  56. B. Derby, N. Reis, Inkjet printing of highly loaded particulate suspensions, MRS Bull. 28 (2003) 815–818. [CrossRef] [Google Scholar]
  57. A. Denneulin, J. Bras, F. Carcone, C. Neuman, A. Blayo, Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films, Carbon 49 (2011) 2603–2614. [CrossRef] [Google Scholar]
  58. S. Jeong, D. Kim, J. Moon, Ink-jet printed organic-inorganic hybrid dielectrics for organic thin-film transistors, J. Phys. Chem. C 112 (2008) 5245–5249. [CrossRef] [Google Scholar]
  59. A. Lee, K. Sudau, K.H. Ahn, S.J. Lee, N. Willenbacher, Optimization of experimental parameters to suppress nozzle clogging in inkjet printing, Ind. Eng. Chem. Res. 51 (2012) 13195–13204. [CrossRef] [Google Scholar]
  60. C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, High photovoltaic performance of inkjet printed polymer: fullerene blends, Adv. Mater. 19 (2007) 3973–3978. [CrossRef] [Google Scholar]
  61. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability and resolution, Ann. Rev. Mater. Res. 40 (2010) 395–414. [CrossRef] [Google Scholar]
  62. J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferriera, J.A. Rogers, High-resolution electrohydrodynamic jet printing, Nature Mat. 6 (2007) 782–789. [CrossRef] [PubMed] [Google Scholar]
  63. K. Murata, J. Matsumoto, A. Tezuka, Y. Matsuba, H. Yokoyama, Super-fine inkjet printing: toward the minimal manufacturing system, Microsyst. Technol. 12 (2005) 2–7. [CrossRef] [Google Scholar]
  64. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, M. Hangyo, Fabrication of terahertz planar metamaterials using a super-fine inkjet printer, App. Phys. Express 3 (2010) 016701. [CrossRef] [Google Scholar]
  65. C.C. Ho, K. Murata, D.A. Steingart, J.W. Evans, P.K. Wright, A super ink jet printed zinc-silver 3D microbattery, J. Micromech. Microeng. 19 (2009) 094013. [CrossRef] [Google Scholar]
  66. K. Murata, Direct fabrication of super-fine wiring and bumping by using inkjet process, Polytronic 2007, Odaiba, Tokyo, pp. 293–296, 2007. [Google Scholar]
  67. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High resolution inkjet printing of all-polymer transistor circuits, Science 15 (2000) 2123–2126. [CrossRef] [PubMed] [Google Scholar]
  68. A.M.J. van den Berg, A.W.M. de Laat, P.J. Smith, J. Perelaar, U.S. Schubert, Geometric control of inkjet printed features using a gelating polymer, J. Mater. Chem. 17 (2007) 677–683. [CrossRef] [Google Scholar]
  69. M. Di Biase, R.E. Saunders, N. Tirelli, B. Derby, Inkjet printing and cell seeding thermoreversible photocurable gel structures, Soft Matter 7 (2011) 2639–2646. [CrossRef] [Google Scholar]
  70. K.F. Teng, R.W. Vest, Liquid ink jet printing with MOD inks for hybrid microcircuits, IEEE Trans. Components Hybrids Manuf. Technol. 11 (1988) 291. [Google Scholar]
  71. S. Gamerith, A. Klug, H. Schreiber, U. Scherf, E. Moderegger, E.J.W. List, Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications, Adv. Funct. Mater. 17 (2007) 3111. [CrossRef] [Google Scholar]
  72. B. Lee, Y. Kim, S. Yang, I. Jeong, J. Moon, A low-cure-temperature copper nano ink for highly conductive printed electrodes, Curr. Appl. Phys. 9 (2009) e157. [CrossRef] [Google Scholar]
  73. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Frechet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology 18 (2007) 345202. [CrossRef] [Google Scholar]
  74. H.J. Hwang, W.H. Chung, H.S. Kim, In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics, Nanotechnology 23 (2012) 485205. [CrossRef] [Google Scholar]
  75. S.-H. Park, H.-S. Kim, Flash light sintering of nickel nanoparticles for printed electronics, Thin Solid Films 550 (2014) 575–581. [CrossRef] [Google Scholar]
  76. J.J.P. Valeton, K. Hermans, C.W.M. Bastiaansen, D.J. Broer, J. Perelaar, U.S. Schubert, G.P. Crawford, P.J. Smith, Room temperature preparation of conductive silver features using spin-coating and inkjet printing, J. Mater. Chem. 20 (2010) 543–546. [CrossRef] [Google Scholar]
  77. S.M. Bidoki, D.M. Lewis, M. Clark, A. Vakorov, P.A. Millner, D. McGorman, Ink-jet fabrication of electronic components, J. Micromech. Microeng. 17 (2007) 967. [CrossRef] [Google Scholar]
  78. Z.-K. Kao, Y.-H. Hung, Y.-C. Liao, Formation of conductive silver films via inkjet reaction system, J. Mater. Chem. 21 (2011) 18799–18803. [CrossRef] [Google Scholar]
  79. Y. Tang, W. He, G. Zhou, S. Wang, X. Yang, Z. Tao, J. Zhou, A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering, Nanotechnology 23 (2012) 355304. [CrossRef] [Google Scholar]
  80. M. Layani, M. Grouchko, S. Shemesh, S. Magdassi, Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions, J. Mater. Chem. 22 (2012) 14349–14352. [CrossRef] [Google Scholar]
  81. D.-Y. Shin, G.-R. Yi, D. Lee, J. Park, Y.-B. Lee, I. Hwang, S. Chun, Rapid two-step metallization through physicochemical conversion of Ag2O for printed “black” transparent conductive films, Nanoscale 5 (2013) 5043–5052. [CrossRef] [Google Scholar]
  82. A.L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Ann. Rev. Fluid Mech. 38 (2006) 159–192. [CrossRef] [Google Scholar]
  83. A.M. Worthington, On the forms assumed by drops of liquids falling vertically on a horizontal plate, Proc. Roy. Soc. 25 (1876) 261–272. [CrossRef] [Google Scholar]
  84. I.V. Roisman, R. Rioboo, C. Tropea, Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. Roy. Soc. A 458 (2002) 1411–1430. [CrossRef] [Google Scholar]
  85. C. Clanet, C. Beguin, D. Richard, D. Quere, Maximal deformation of an impacting drop, J. Fluid Mech. 517 (2004) 199–208. [CrossRef] [Google Scholar]
  86. Y. Son, C. Kim, D.H. Yang, D.J. Ahn, Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low weber and reynolds numbers, Langmuir 24 (2008) 2900–2907. [CrossRef] [Google Scholar]
  87. S. Jung, I.M. Hutchings, The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale, Soft Matter 8 (2012) 2686–2696. [CrossRef] [Google Scholar]
  88. P.C. Duineveld, The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate, J. Fluid Mech. 477 (2003) 175–200. [CrossRef] [Google Scholar]
  89. J. Stringer, B. Derby, Limits to feature size and resolution in ink jet printing, J. Eur. Ceram. Soc. 29 (2009) 913–918. [CrossRef] [Google Scholar]
  90. S. Schiaffino, A.A. Sonin, Molten droplet deposition and solidification at low weber numbers, Phys. Fluids 9 (1997) 3172–3187. [CrossRef] [Google Scholar]
  91. T. Lim, S. Han, J. Chung, J.T. Chung, S. Ko, C.P. Grigoropoulos, Experimental study on spreading and evaporationof inkjet printed pico-liter droplet on a heated substrate, Int. J. Heat Mass Transfer 52 (2009) 431–441. [CrossRef] [Google Scholar]
  92. J. Kwon, S. Hong, H. Lee, J. Yeo, S.S. Lee, S.H. Ko, Direct selective growth of ZnO nanowire arrays from inkjet printed zinc acetate precursor on a heated substrate, Nano. Res. Lett. 8 (2013) 489. [CrossRef] [Google Scholar]
  93. D. Soltman, B. Smith, S.J.S. Morris, V. Subramanian, Inkjet printing of precisely defined features using contact-angle hysteresis, J. Colloid Int. Sci. 400 (2013) 135–139. [CrossRef] [Google Scholar]
  94. D. Bonn, J. Eggers, J. Indeku, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 731–805. [CrossRef] [Google Scholar]
  95. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389 (1997) 827–829. [CrossRef] [Google Scholar]
  96. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop, Phys. Rev. E 62 (2000) 756–765. [CrossRef] [Google Scholar]
  97. J. Perelaer, P.J. Smith, C.E. Hendriks, A.M.J. van den Berg, U.S. Schubert, The preferential deposition of silica micro-particles at the boundary of inkjet printed droplets, Soft Matter 4 (2008) 1072–1078. [CrossRef] [Google Scholar]
  98. K.A. Baldwin, M. Granjard, D.I. Wilmer, K. Sefiane, D.J. Fairhurst, Drying and deposition of poly(ethylene oxide) droplets determined by Peclet number, Soft Matter 7 (2011) 7819–7826. [CrossRef] [Google Scholar]
  99. H. Hu, R.G. Larson, Marangoni effect reverses coffee-ring depositions, J. Phys Chem. B 110 (2006) 7090–7094. [CrossRef] [PubMed] [Google Scholar]
  100. D. Soltman, V. Subramanian, Inkjet-printed line morphologiesand temperature control of the coffee ring effect, Langmuir 24 (2008) 2224–2231. [CrossRef] [Google Scholar]
  101. R. Dou, B. Derby, Formation of coffee stains on porous surfaces, Langmuir 28 (2012) 5331–5338. [CrossRef] [Google Scholar]
  102. D.V. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition, Appl. Surf. Sci. 365 (2016) 153–159. [CrossRef] [Google Scholar]
  103. R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram, Langmuir 26 (2010) 7833–7842. [CrossRef] [PubMed] [Google Scholar]
  104. B.J. de Gans, U.S. Schubert, Inkjet printing of well-defined polymer dots and arrays, Langmuir 20 (2004) 7789–7793. [CrossRef] [Google Scholar]
  105. R. Dou, T. Wang, Y. Guo, B. Derby, Ink-jet printing of zirconia: coffee staining and line stability, J. Am. Ceram. Soc. 94 (2011) 3787–3792. [CrossRef] [Google Scholar]
  106. J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing, Langmuir 26 (2010) 10365–10372. [CrossRef] [Google Scholar]
  107. T. Wang, M.A. Roberts, I.A. Kinloch, B. Derby, Inkjet printed carbon nanotube networks: the influence of drop spacing and drying on electrical properties, J. Phys. D 45 (2012) 315304. [CrossRef] [Google Scholar]
  108. E. Tekin, B.-J. de Gans, U.S. Schubert, Ink-jet printing of polymers – from single dots to thin film libraries, J. Mater. Chem. 14 (2004) 2627–2632. [CrossRef] [Google Scholar]
  109. D. Soltman, B. Smith, H. Kang, S.J.S. Morris, V. Subramanian, Methodology for inkjet printing of partially wetting films, Langmuir 26 (2010) 15686–15693. [CrossRef] [Google Scholar]
  110. J.-L. Lin, Z.-K. Kao, Y.-C. Liao, Preserving precision of inkjet-printed features with solvents of different volatilities, Langmuir 29 (2013) 11330–11336. [CrossRef] [Google Scholar]
  111. Y.V. Kalinin, V. Berejnov, R.E. Thorne, Contact line pinning by microfabricated patterns: effects of microscale topography, Langmuir 25 (2009) 5391–5397. [CrossRef] [Google Scholar]
  112. H.Y. Park, B.J. Kang, D. Lee, J.H. Oh, Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment, Thin Solid Films 526 (2013) 162–166. [CrossRef] [Google Scholar]
  113. D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications, Appl. Surf. Sci. 357 (2015) 248–254. [CrossRef] [Google Scholar]
  114. D.V. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Laser textured surface gradients, Appl. Surf. Sci. 371 (2016) 583–589. [CrossRef] [Google Scholar]
  115. C.E. Hendriks, P.J. Smith, J. Perelaer, A.M.J. ven den Berg, U.S. Schubert, Invisible’ silver tracks produced by combining hot-embossing and inkjet printing, Adv. Funct. Mater. 18 (2008) 1031–1038. [CrossRef] [Google Scholar]
  116. Y. Yoshioka, G.E. Jabbour, Desktop inkjet printer as a tool to print conducting polymers, Synth. Metals 156 (2006) 779–783. [CrossRef] [Google Scholar]
  117. A. Morrin, O. Ngamna, E. O’Malley, N. Kent, S.E. Moulton, G.G. Wallace, M.R. Smyth, A.J. Killard, The fabrication and characterization of inkjet-printed polyaniline nanoparticle films, Electrochim. Acta 53 (2008) 5092–5099. [CrossRef] [Google Scholar]
  118. K. Kordas, T. Mustonen, G. Toth, H. Jantunen, M. Jantunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P.M. Ajayan, Inkjet printing of electrically conductive patterns of carbon nanotubes, Small 2 (2006) 1021–1025. [CrossRef] [Google Scholar]
  119. L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chan, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors, Nano Research 4 (2011) 675–684. [CrossRef] [Google Scholar]
  120. A.L. Dearden, P.J. Smith, D.-Y. Shin, N. Reis, B. Derby, P. O’Brien, A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive track, Macromol. Rapid Comm. 26 (2005) 315. [CrossRef] [Google Scholar]
  121. P. Buffat, J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (1976) 2287. [CrossRef] [Google Scholar]
  122. J. Stringer, B. Xu, B. Derby, Characterization of photo-reduced silver organometallic salt deposited by inkjet printing, NIP2007, Anchorage, AK, pp. 960, 2007. [Google Scholar]
  123. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures, Nanotechnology 19 (2008) 175201. [CrossRef] [Google Scholar]
  124. A.T. Alastalo, T. Mattila, M.L. Allen, M.J. Aronniemi, J.H. Leppäniemi, K.A. Ojanperä, M.P. Suhonen, H. Seppä, Rapid electircal sintering of nanoparticle structures, Mater. Res. Soc. Symp. Proc. 2009 1113 (2009) 1113-F02–07. [Google Scholar]
  125. J. Perelaer, B.-J. de Gans, U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks, Adv. Mater. 18 (2006) 2101. [CrossRef] [Google Scholar]
  126. T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wand, M. Miyasaka, Y. Takeuchi, Solution-processed silicon films and transistors, Nature 440 (2006) 783–786. [CrossRef] [Google Scholar]
  127. H. Klauk, Organic thin-film transistors, Chem. Soc. Rev. 39 (2010) 2643–2666. [CrossRef] [Google Scholar]
  128. C. Liao, F. Yan, Organic semiconductors in organic thin-film transistor-based chemical and biological sensors, Polym. Rev. 53 (2013) 352–406. [CrossRef] [Google Scholar]
  129. M.J. Małachowski, J. Żmija, Organic field-effect transistors, Opto-Electron. Rev. 18 (2010) 121–136. [Google Scholar]
  130. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Elastomeric transistor stamps: reversible probing of charge transport in organic crystals, Science 303 (2004) 1644–1646. [CrossRef] [PubMed] [Google Scholar]
  131. O.D. Jurchescu, J. Baas, T.T.M. Palstra, Effect of impurities on the mobility of single crystal pentacene, Appl. Phys. Lett. 84 (2004) 3061–3063. [CrossRef] [Google Scholar]
  132. Y.-H. Kim, B. Yoo, J.E. Anthony, S.K. Park, Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing, Adv. Mater. 24 (2012) 497–502. [CrossRef] [Google Scholar]
  133. M.-B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, S.G. Yeates, Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends, J. Mater. Chem. 20 (2010) 9155–9160. [CrossRef] [Google Scholar]
  134. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Inkjet printing of single-crystal films, Nature 475 (2011) 364–367. [CrossRef] [PubMed] [Google Scholar]
  135. H. Minemawari, T. Yamada, T. Hasegawa, Crystalline film growth of TIPS-pentacene by double-shot inkjet printing technique, Jpn. J. Appl. Phys. 53 (2014) 05HC10. [CrossRef] [Google Scholar]
  136. V. Sanchez-Romaguera, B.-M. Madec, S.G. Yeates, Inkjet printing of 3D metal-insulator-metal crossovers, React. Funct. Polym. 68 (2008) 1052–1058. [CrossRef] [Google Scholar]
  137. S.A. Algarni, T.M. Althagafi, P.J. Smith, M. Grell, An ionic liquid-gated polymer thin film transistor with exceptionally low “on” resistance, Appl. Phys. Lett. 104 (2014) 182107. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.