Manufacturing Rev.
Volume 3, 2016
Special Issue - Additive Manufacturing Materials & Devices
Article Number 12
Number of page(s) 17
Published online 26 July 2016
  1. ASTM F2792-12a, Standard terminology for additive manufacturing technologies, ASTM International, West Conshohocken, PA, 2012.
  2. J.H.P. Pallari, K.W. Dalgarno, J. Woodburn, Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering, IEEE Trans. Biomed. Eng. 57 (2010) 1750–1756. [CrossRef]
  3. L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machade, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Bracke, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, J. Phil. Trans. Royal. Soc. A 368 (2010) 1999–2032. [CrossRef]
  4. M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Integrated 3D-printed reactionware for chemical synthesis and analysis, Nature Chem. 4 (2012) 349–354. [CrossRef]
  5. M. Miodownik, Robotic craft: rapid-prototype technology may take the labor out of craft, but it also allows individually styled items to compete with those that have been mass-produced, Mater. Today 9 (2006) 6.
  6. B.T. Wittbrodt, A.G. Glover, J. Laureto, G.C. Anzalone, D. Oppliger, J.L. Irwin, J.M. Pearce, Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers, Mechatronics 23 (2013) 713–726. [CrossRef]
  7. I. Campbell, D. Bourell, I. Gibson, Additive manufacturing: rapid prototyping comes of age, Rapid Prototyping J. 18 (2012) 255–258. [CrossRef]
  8. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164. [CrossRef]
  9. K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN Mech. Eng. 2012 (2012) 208760.
  10. N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers Mech. Eng. 8 (2013) 215–243. [CrossRef]
  11. H. Devaraj, J. Travas-Sejdic, R. Sharma, N. Aydemir, D. Williams, E. Haemmerle, K.C. Aw, Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs, Bioinspir. Biomim. 10 (2015) 016017. [CrossRef]
  12. G.M. Gratson, M. Xu, J.A. Lewis, Microperiodic structures: direct writing of three-dimensional webs, Nature 428 (2004) 386. [CrossRef] [PubMed]
  13. S. Wu, J. Serbin, M. Gu, Two-photon polymerisation for three-dimensional micro-fabrication, J. Photochem. Photobiol. A: Chem. 181 (2006) 1–11. [CrossRef]
  14. C. Sun, N. Fang, D.M. Wu, X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask, Sens. Actuators A: Phys. 121 (2005) 113–120. [CrossRef]
  15. N. Hopkinson, P. Dickens, Analysis of rapid manufacturing – using layer manufacturing processes for production, P. I. Mech. Eng. C J. MEC 217 (2003) 31–39. [CrossRef]
  16. C.E. Majewski, D. Oduye, H.R. Thomas, N. Hopkinson, Effect of infra-red power level on the sintering behaviour in the high speed sintering process, Rapid Prototyping J. 14 (2008) 155–160. [CrossRef]
  17. J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, J.M. DeSimone, Continuous liquid interface production of 3D objects, Science 347 (2015) 1349–1352. [CrossRef]
  18. X. Lu, S. Yang, J.R.G. Evans, Ultrasound-assisted microfeeding of fine powders, Particuology 6 (2008) 2–8. [CrossRef]
  19. A.J. Lopes, E. McDonald, R.B. Wicker, Integrating stereolithography and direct print technology for 3D structural electronics fabrication, Rapid Prototyping J. 18 (2012) 129–143. [CrossRef]
  20. S.H. Jang, S.T. Oh, I.H. Lee, H.-C. Kim, H.Y. Cho, 3-dimensional circuit device fabrication process using stereolithography and direct writing, Int. J. Precis. Eng. Manuf. 16 (2015) 1361–1367. [CrossRef]
  21. S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Bilson, D.A. Hutchins, A simple low-cost conductive material for 3D printing of electronic sensors, PLoS One 7 (2012) e49365. [CrossRef]
  22. M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesa, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, “3D printed bionic ears, Nano Lett. 13 (2013) 2634–2639. [CrossRef]
  23. I.T. Nassar, T.M. Weller, An electrically-small, 3-D cube antenna fabricated with additive manufacturing, PAWR 2013, Santa Clara, CA, 2013, pp. 91–93.
  24. C. Shemelya, F. Cedillos, E. Aguilera, D. Espalin, D. Muse, R. Wicker, E. McDonald, IEEE Sensors 15 (2015) 1280–1286. [CrossRef]
  25. C. Kim, D. Espalin, A. Cuaron, M.A. Perez, M. Lee, E. McDonald, R.B. Wicker, Cooperative tool path planning for wire embedding on additively manufactured curved surfaces using robot kinematics, J. Mech. Robot. 7 (2015) 021003. [CrossRef]
  26. E. Tekin, P.J. Smith, U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter 4 (2008) 703. [CrossRef]
  27. N. Reis, C. Ainsley, B. Derby, Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors, J. Appl. Phys. 97 (2005) 094903. [CrossRef]
  28. J. Ebert, E. Ozkol, A. Zeichner, K. Uibel, O. Weiss, U. Koops, R. Telle, H. Fischer, Direct inkjet printing of dental prostheses made of zirconia, J. Dent. Res. 88 (2009) 673–676. [CrossRef]
  29. E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Corrie, Three dimensional printing: rapid tooling and prototypes directly from a CAD model, J. Eng. Ind. 114 (1992) 481–488. [CrossRef]
  30. B.M. Wu, S.W. Borland, R.A. Giordano, L.G. Cima, E.M. Sachs, M.J. Cima, Solid free-form fabrication of drug delivery devices, J. Control. Release 40 (1996) 77–87. [CrossRef]
  31. B. Derby, Printing and prototyping of tissues and scaffolds, Science 338 (2012) 921. [CrossRef]
  32. M. Medina-Sanchez, C. Martinez-Domingo, E. Ramon, A. Merkoci, An inkjet-printed field-effect transistor for label-free biosensing, Adv. Funct. Mater. 24 (2014) 6291–6302. [CrossRef]
  33. Y. Zhang, J. Stringer, R. Grainger, P.J. Smith, A. Hodzic, Fabrication of patterned thermoplastic microphases between composite plies by inkjet printing, J. Comp. Mater. 49 (2014) 1907–1913. [CrossRef]
  34. J. Perelaar, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials, J. Mater. Chem. 20 (2010) 8446–8453. [CrossRef]
  35. Y. Zhang, C. Tse, D. Rahoulamin, P.J. Smith, Scaffolds for tissue engineering produced by inkjet printing, Cent. Eur. J. Eng. 2 (2012) 323.
  36. C.C.W. Tse, S.S. Ng, J. Stringer, S. MacNeil, J.W. Haycock, P.J. Smith, Utilising inkjet printed paraffin wax for cell patterning applications, Int. J. Bioprinting 2 (2016) 35–44.
  37. T. Boland, T. Xu, B. Damon, X. Cui, Application of Inkjet Printing to Tissue Engineering, Biotechnol. J. 1 (2006) 910. [CrossRef]
  38. V. Sanchez-Romaguera, M.A. Ziai, D. Oyeka, S. Barbosa, J.S.R. Wheeler, J.C. Batchelor, E.A. Parker, S.G. Yeates, Towards inkjet-printed low cost passive UHF RFID skin mounted tattoo paper tags based on silver nanoparticle tags, J. Mater. Chem. C 1 (2013) 6395. [CrossRef]
  39. S.B. Fuller, E.J. Wilhelm, J.A. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems, J. Microelectromech. Syst. 11 (2002) 54–60. [CrossRef]
  40. S.H. Eom, S. Senthilarasu, P. Uthirakumar, S.C. Yoon, J. Lim, C. Lee, H.S. Lim, J. Lee, S.-H. Lee, Polymer solar cells based on inkjet-printed PEDOT:PSS layer, Org. Electr. 10 (2009) 536. [CrossRef]
  41. H.P. Le, Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42 (1998) 49–62.
  42. D.B. Bogy, F.E. Talke, Experimental and theoretical study of wave propogation phenomena in drop-on-demand ink jet devices, IBM J. Res. Dev. 29 (1984) 314–321. [CrossRef]
  43. A.B.M. Buanz, R. Telford, I.J. Scowen, S. Gaisford, Rapid preparation of pharmaceutical co-crystals with thermal ink-jet printing, Cryst. Eng. Comm. 15 (2013) 1031–1035. [CrossRef]
  44. P.J. Smith, D.-Y. Shin, J.E. Stringer, N. Reis, B. Derby, Direct ink-jet printing and low temperature conversion of conductive silver patterns, J. Mater. Sci. 41 (2006) 4153. [CrossRef]
  45. M. Grouchko, A. Kamyshny, S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem. 19 (2009) 3057. [CrossRef]
  46. S.D. Hoath, W.-K. Hsiao, S.J. Jung, G.D. Martin, I.M. Hutchings, Drop speeds from drop-on-demand ink-jet print heads, J. Imaging Sci. Technol. 57 (2013) 010503. [CrossRef]
  47. K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, B. Derby, Ink-jet printing of wax-based alumina suspensions, J. Am. Ceram. Soc. 84 (2001) 2514–2520, DOI: 10.1111/j.1151-2916.2001.tb01045.x. [CrossRef]
  48. B.-J. de Gans, E. Kazancioglu, W. Meyer, U.S. Schubert, Ink-jet printing polymers and polymer libraries using micropipettes, Macromol. Rapid Commun. 25 (2004) 292–296, DOI: 10.1002/marc.200300148. [CrossRef]
  49. D. Xu, V. Sanchez-Romaguera, S. Barbosa, W. Travis, J. de Wit, P. Swan, S.G. Yeates, Inkjet printing of polymer solutions and the role of chain entanglement, J. Mater. Chem. 17 (2007) 4902–4907. [CrossRef]
  50. S.D. Hoath, I.M. Hutchings, G.D. Martin, T.R. Tuladhar, M.R. Mackley, D. Vadillo, Links between ink rheology, drop-on-demand jet formation, and printability, J. Imaging Sci. Technol. 53 (2009) 041208. [CrossRef]
  51. D.J. Hayes, W.R. Cox, M.E. Grove, Micro-jet printing of polymers and solder for electronics manufacturing, J. Eletron. Manu. 8 (1998) 209–216. [CrossRef]
  52. J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets, IBM J. Res. Dev. 28 (1984) 322–333. [CrossRef]
  53. D.B. van Dam, C. Le Clerc, Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Phys. Fluids 16 (2004) 3403–3414. [CrossRef]
  54. Y. Zhang, J. Stringer, R. Grainger, P.J. Smith, A. Hodzic, Improvements in carbon fibre reinforced composites by inkjet printing of thermoplastic polymer patterns, Phys. Status Solidi RRL 8 (2014) 56–60, DOI: 10.1002/pssr.201308149. [CrossRef]
  55. L. Bergstrom, Rheological properties of Al2O3-SiC whisker composite suspensions, J. Mat. Sci. 31 (1996) 5257–5270. [CrossRef]
  56. B. Derby, N. Reis, Inkjet printing of highly loaded particulate suspensions, MRS Bull. 28 (2003) 815–818. [CrossRef]
  57. A. Denneulin, J. Bras, F. Carcone, C. Neuman, A. Blayo, Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films, Carbon 49 (2011) 2603–2614. [CrossRef]
  58. S. Jeong, D. Kim, J. Moon, Ink-jet printed organic-inorganic hybrid dielectrics for organic thin-film transistors, J. Phys. Chem. C 112 (2008) 5245–5249. [CrossRef]
  59. A. Lee, K. Sudau, K.H. Ahn, S.J. Lee, N. Willenbacher, Optimization of experimental parameters to suppress nozzle clogging in inkjet printing, Ind. Eng. Chem. Res. 51 (2012) 13195–13204. [CrossRef]
  60. C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, High photovoltaic performance of inkjet printed polymer: fullerene blends, Adv. Mater. 19 (2007) 3973–3978. [CrossRef]
  61. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability and resolution, Ann. Rev. Mater. Res. 40 (2010) 395–414. [CrossRef]
  62. J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferriera, J.A. Rogers, High-resolution electrohydrodynamic jet printing, Nature Mat. 6 (2007) 782–789. [CrossRef] [PubMed]
  63. K. Murata, J. Matsumoto, A. Tezuka, Y. Matsuba, H. Yokoyama, Super-fine inkjet printing: toward the minimal manufacturing system, Microsyst. Technol. 12 (2005) 2–7. [CrossRef]
  64. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, M. Hangyo, Fabrication of terahertz planar metamaterials using a super-fine inkjet printer, App. Phys. Express 3 (2010) 016701. [CrossRef]
  65. C.C. Ho, K. Murata, D.A. Steingart, J.W. Evans, P.K. Wright, A super ink jet printed zinc-silver 3D microbattery, J. Micromech. Microeng. 19 (2009) 094013. [CrossRef]
  66. K. Murata, Direct fabrication of super-fine wiring and bumping by using inkjet process, Polytronic 2007, Odaiba, Tokyo, pp. 293–296, 2007.
  67. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High resolution inkjet printing of all-polymer transistor circuits, Science 15 (2000) 2123–2126. [CrossRef] [PubMed]
  68. A.M.J. van den Berg, A.W.M. de Laat, P.J. Smith, J. Perelaar, U.S. Schubert, Geometric control of inkjet printed features using a gelating polymer, J. Mater. Chem. 17 (2007) 677–683. [CrossRef]
  69. M. Di Biase, R.E. Saunders, N. Tirelli, B. Derby, Inkjet printing and cell seeding thermoreversible photocurable gel structures, Soft Matter 7 (2011) 2639–2646. [CrossRef]
  70. K.F. Teng, R.W. Vest, Liquid ink jet printing with MOD inks for hybrid microcircuits, IEEE Trans. Components Hybrids Manuf. Technol. 11 (1988) 291.
  71. S. Gamerith, A. Klug, H. Schreiber, U. Scherf, E. Moderegger, E.J.W. List, Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications, Adv. Funct. Mater. 17 (2007) 3111. [CrossRef]
  72. B. Lee, Y. Kim, S. Yang, I. Jeong, J. Moon, A low-cure-temperature copper nano ink for highly conductive printed electrodes, Curr. Appl. Phys. 9 (2009) e157. [CrossRef]
  73. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Frechet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology 18 (2007) 345202. [CrossRef]
  74. H.J. Hwang, W.H. Chung, H.S. Kim, In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics, Nanotechnology 23 (2012) 485205. [CrossRef]
  75. S.-H. Park, H.-S. Kim, Flash light sintering of nickel nanoparticles for printed electronics, Thin Solid Films 550 (2014) 575–581. [CrossRef]
  76. J.J.P. Valeton, K. Hermans, C.W.M. Bastiaansen, D.J. Broer, J. Perelaar, U.S. Schubert, G.P. Crawford, P.J. Smith, Room temperature preparation of conductive silver features using spin-coating and inkjet printing, J. Mater. Chem. 20 (2010) 543–546. [CrossRef]
  77. S.M. Bidoki, D.M. Lewis, M. Clark, A. Vakorov, P.A. Millner, D. McGorman, Ink-jet fabrication of electronic components, J. Micromech. Microeng. 17 (2007) 967. [CrossRef]
  78. Z.-K. Kao, Y.-H. Hung, Y.-C. Liao, Formation of conductive silver films via inkjet reaction system, J. Mater. Chem. 21 (2011) 18799–18803. [CrossRef]
  79. Y. Tang, W. He, G. Zhou, S. Wang, X. Yang, Z. Tao, J. Zhou, A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering, Nanotechnology 23 (2012) 355304. [CrossRef]
  80. M. Layani, M. Grouchko, S. Shemesh, S. Magdassi, Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions, J. Mater. Chem. 22 (2012) 14349–14352. [CrossRef]
  81. D.-Y. Shin, G.-R. Yi, D. Lee, J. Park, Y.-B. Lee, I. Hwang, S. Chun, Rapid two-step metallization through physicochemical conversion of Ag2O for printed “black” transparent conductive films, Nanoscale 5 (2013) 5043–5052. [CrossRef]
  82. A.L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Ann. Rev. Fluid Mech. 38 (2006) 159–192. [CrossRef]
  83. A.M. Worthington, On the forms assumed by drops of liquids falling vertically on a horizontal plate, Proc. Roy. Soc. 25 (1876) 261–272. [CrossRef]
  84. I.V. Roisman, R. Rioboo, C. Tropea, Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. Roy. Soc. A 458 (2002) 1411–1430. [CrossRef]
  85. C. Clanet, C. Beguin, D. Richard, D. Quere, Maximal deformation of an impacting drop, J. Fluid Mech. 517 (2004) 199–208. [CrossRef]
  86. Y. Son, C. Kim, D.H. Yang, D.J. Ahn, Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low weber and reynolds numbers, Langmuir 24 (2008) 2900–2907. [CrossRef]
  87. S. Jung, I.M. Hutchings, The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale, Soft Matter 8 (2012) 2686–2696. [CrossRef]
  88. P.C. Duineveld, The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate, J. Fluid Mech. 477 (2003) 175–200. [CrossRef]
  89. J. Stringer, B. Derby, Limits to feature size and resolution in ink jet printing, J. Eur. Ceram. Soc. 29 (2009) 913–918. [CrossRef]
  90. S. Schiaffino, A.A. Sonin, Molten droplet deposition and solidification at low weber numbers, Phys. Fluids 9 (1997) 3172–3187. [CrossRef]
  91. T. Lim, S. Han, J. Chung, J.T. Chung, S. Ko, C.P. Grigoropoulos, Experimental study on spreading and evaporationof inkjet printed pico-liter droplet on a heated substrate, Int. J. Heat Mass Transfer 52 (2009) 431–441. [CrossRef]
  92. J. Kwon, S. Hong, H. Lee, J. Yeo, S.S. Lee, S.H. Ko, Direct selective growth of ZnO nanowire arrays from inkjet printed zinc acetate precursor on a heated substrate, Nano. Res. Lett. 8 (2013) 489. [CrossRef]
  93. D. Soltman, B. Smith, S.J.S. Morris, V. Subramanian, Inkjet printing of precisely defined features using contact-angle hysteresis, J. Colloid Int. Sci. 400 (2013) 135–139. [CrossRef]
  94. D. Bonn, J. Eggers, J. Indeku, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 731–805. [CrossRef]
  95. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389 (1997) 827–829. [CrossRef]
  96. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop, Phys. Rev. E 62 (2000) 756–765. [CrossRef]
  97. J. Perelaer, P.J. Smith, C.E. Hendriks, A.M.J. van den Berg, U.S. Schubert, The preferential deposition of silica micro-particles at the boundary of inkjet printed droplets, Soft Matter 4 (2008) 1072–1078. [CrossRef]
  98. K.A. Baldwin, M. Granjard, D.I. Wilmer, K. Sefiane, D.J. Fairhurst, Drying and deposition of poly(ethylene oxide) droplets determined by Peclet number, Soft Matter 7 (2011) 7819–7826. [CrossRef]
  99. H. Hu, R.G. Larson, Marangoni effect reverses coffee-ring depositions, J. Phys Chem. B 110 (2006) 7090–7094. [CrossRef] [PubMed]
  100. D. Soltman, V. Subramanian, Inkjet-printed line morphologiesand temperature control of the coffee ring effect, Langmuir 24 (2008) 2224–2231. [CrossRef]
  101. R. Dou, B. Derby, Formation of coffee stains on porous surfaces, Langmuir 28 (2012) 5331–5338. [CrossRef]
  102. D.V. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition, Appl. Surf. Sci. 365 (2016) 153–159. [CrossRef]
  103. R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram, Langmuir 26 (2010) 7833–7842. [CrossRef] [PubMed]
  104. B.J. de Gans, U.S. Schubert, Inkjet printing of well-defined polymer dots and arrays, Langmuir 20 (2004) 7789–7793. [CrossRef]
  105. R. Dou, T. Wang, Y. Guo, B. Derby, Ink-jet printing of zirconia: coffee staining and line stability, J. Am. Ceram. Soc. 94 (2011) 3787–3792. [CrossRef]
  106. J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing, Langmuir 26 (2010) 10365–10372. [CrossRef]
  107. T. Wang, M.A. Roberts, I.A. Kinloch, B. Derby, Inkjet printed carbon nanotube networks: the influence of drop spacing and drying on electrical properties, J. Phys. D 45 (2012) 315304. [CrossRef]
  108. E. Tekin, B.-J. de Gans, U.S. Schubert, Ink-jet printing of polymers – from single dots to thin film libraries, J. Mater. Chem. 14 (2004) 2627–2632. [CrossRef]
  109. D. Soltman, B. Smith, H. Kang, S.J.S. Morris, V. Subramanian, Methodology for inkjet printing of partially wetting films, Langmuir 26 (2010) 15686–15693. [CrossRef]
  110. J.-L. Lin, Z.-K. Kao, Y.-C. Liao, Preserving precision of inkjet-printed features with solvents of different volatilities, Langmuir 29 (2013) 11330–11336. [CrossRef]
  111. Y.V. Kalinin, V. Berejnov, R.E. Thorne, Contact line pinning by microfabricated patterns: effects of microscale topography, Langmuir 25 (2009) 5391–5397. [CrossRef]
  112. H.Y. Park, B.J. Kang, D. Lee, J.H. Oh, Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment, Thin Solid Films 526 (2013) 162–166. [CrossRef]
  113. D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications, Appl. Surf. Sci. 357 (2015) 248–254. [CrossRef]
  114. D.V. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Laser textured surface gradients, Appl. Surf. Sci. 371 (2016) 583–589. [CrossRef]
  115. C.E. Hendriks, P.J. Smith, J. Perelaer, A.M.J. ven den Berg, U.S. Schubert, Invisible’ silver tracks produced by combining hot-embossing and inkjet printing, Adv. Funct. Mater. 18 (2008) 1031–1038. [CrossRef]
  116. Y. Yoshioka, G.E. Jabbour, Desktop inkjet printer as a tool to print conducting polymers, Synth. Metals 156 (2006) 779–783. [CrossRef]
  117. A. Morrin, O. Ngamna, E. O’Malley, N. Kent, S.E. Moulton, G.G. Wallace, M.R. Smyth, A.J. Killard, The fabrication and characterization of inkjet-printed polyaniline nanoparticle films, Electrochim. Acta 53 (2008) 5092–5099. [CrossRef]
  118. K. Kordas, T. Mustonen, G. Toth, H. Jantunen, M. Jantunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P.M. Ajayan, Inkjet printing of electrically conductive patterns of carbon nanotubes, Small 2 (2006) 1021–1025. [CrossRef]
  119. L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chan, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors, Nano Research 4 (2011) 675–684. [CrossRef]
  120. A.L. Dearden, P.J. Smith, D.-Y. Shin, N. Reis, B. Derby, P. O’Brien, A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive track, Macromol. Rapid Comm. 26 (2005) 315. [CrossRef]
  121. P. Buffat, J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (1976) 2287. [CrossRef]
  122. J. Stringer, B. Xu, B. Derby, Characterization of photo-reduced silver organometallic salt deposited by inkjet printing, NIP2007, Anchorage, AK, pp. 960, 2007.
  123. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures, Nanotechnology 19 (2008) 175201. [CrossRef]
  124. A.T. Alastalo, T. Mattila, M.L. Allen, M.J. Aronniemi, J.H. Leppäniemi, K.A. Ojanperä, M.P. Suhonen, H. Seppä, Rapid electircal sintering of nanoparticle structures, Mater. Res. Soc. Symp. Proc. 2009 1113 (2009) 1113-F02–07.
  125. J. Perelaer, B.-J. de Gans, U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks, Adv. Mater. 18 (2006) 2101. [CrossRef]
  126. T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wand, M. Miyasaka, Y. Takeuchi, Solution-processed silicon films and transistors, Nature 440 (2006) 783–786. [CrossRef]
  127. H. Klauk, Organic thin-film transistors, Chem. Soc. Rev. 39 (2010) 2643–2666. [CrossRef]
  128. C. Liao, F. Yan, Organic semiconductors in organic thin-film transistor-based chemical and biological sensors, Polym. Rev. 53 (2013) 352–406. [CrossRef]
  129. M.J. Małachowski, J. Żmija, Organic field-effect transistors, Opto-Electron. Rev. 18 (2010) 121–136.
  130. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Elastomeric transistor stamps: reversible probing of charge transport in organic crystals, Science 303 (2004) 1644–1646. [CrossRef] [PubMed]
  131. O.D. Jurchescu, J. Baas, T.T.M. Palstra, Effect of impurities on the mobility of single crystal pentacene, Appl. Phys. Lett. 84 (2004) 3061–3063. [CrossRef]
  132. Y.-H. Kim, B. Yoo, J.E. Anthony, S.K. Park, Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing, Adv. Mater. 24 (2012) 497–502. [CrossRef]
  133. M.-B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, S.G. Yeates, Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends, J. Mater. Chem. 20 (2010) 9155–9160. [CrossRef]
  134. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Inkjet printing of single-crystal films, Nature 475 (2011) 364–367. [CrossRef] [PubMed]
  135. H. Minemawari, T. Yamada, T. Hasegawa, Crystalline film growth of TIPS-pentacene by double-shot inkjet printing technique, Jpn. J. Appl. Phys. 53 (2014) 05HC10. [CrossRef]
  136. V. Sanchez-Romaguera, B.-M. Madec, S.G. Yeates, Inkjet printing of 3D metal-insulator-metal crossovers, React. Funct. Polym. 68 (2008) 1052–1058. [CrossRef]
  137. S.A. Algarni, T.M. Althagafi, P.J. Smith, M. Grell, An ionic liquid-gated polymer thin film transistor with exceptionally low “on” resistance, Appl. Phys. Lett. 104 (2014) 182107. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.