Open Access
Review
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 25
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2019023
Published online 07 November 2019
  1. E. Irissou, J.-G. Legoux, A.N. Ryabinin, B. Jodoin, C. Moreau, Review on cold spraying processes and technology: Part I − Intellectual property, J. Therm. Spray Technol. 17 (2008) 495–516 [CrossRef] [Google Scholar]
  2. R.N. Raoelison, Y. Xie, T. Sapanathan, M.P. Planche, R. Kromer, S. Costil et al., Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date, Addit. Manuf. 19 (2018) 134–159 [CrossRef] [Google Scholar]
  3. H. Singh, T.S. Sidhu, S.B.S. Kalsi, Cold spraying technology: future of coating deposition processes, Frat. Ed. Integrita Strutt. 22 (2012) 69–84 [CrossRef] [Google Scholar]
  4. D.K. Christoulis, M. Jeandin, E. Irissou, J. Legoux, W. Knapp, Laser-Assisted Cold spraying (LACS) (2012) DOI: 10.5772/36104 [Google Scholar]
  5. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, M. Dao, Cold spraying coating: review of material systems and future perspectives, Surf. Eng. 30 (2014) 369–395 [CrossRef] [Google Scholar]
  6. T. Marrocco, D.G. McCartney, P.H. Shipway, A.J. Sturgeon, Production of titanium deposits by cold-gas dynamic spray: numerical modeling and experimental characterization, J. Therm. Spray Technol. 15 (2006) 263–272 [CrossRef] [Google Scholar]
  7. D. MacDonald, R. Fernández, F. Delloro, B. Jodoin, Cold spraying of armstrong process titanium powder for additive manufacturing, J. Therm. Spray Technol. 26 (2017) 598–609 [CrossRef] [Google Scholar]
  8. T.H.V. Steenkiste, J.R. Smith, R.E. Teets, Aluminum coatings via kinetic spray with relatively large powder particles, Surf. Coatings Technol. 154 (2002) 237–252 [CrossRef] [Google Scholar]
  9. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, D. Helfritch, Analysis of the impact velocity of powder particles in the cold-gas dynamic-spraying processes, Mater. Sci. Eng. A 368 (2004) 222–230 [CrossRef] [Google Scholar]
  10. H. Assadi, F. Gartner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying, Acta Mater. 6454 (2003) 4379–4394 [CrossRef] [Google Scholar]
  11. R. Lupoi, W. O'Neill, Powder stream characteristics in cold spraying nozzles, Surf. Coatings Technol. 206 (2011) 1069–1076 [CrossRef] [Google Scholar]
  12. R. Lupoi, W. O'Neill, Deposition of metallic coatings on polymer surfaces using cold spraying, Surf. Coatings Technol. 205 (2010) 2167–2173 [CrossRef] [Google Scholar]
  13. J. Villafuerte, Current and future applications of cold spraying technology, Met. Finish. 108 (2010) 37–39 [CrossRef] [Google Scholar]
  14. W.J. Marple, The Cold Gas-Dynamic Spray and Characterization of Microcrystalline and Nanocrystalline Copper Alloys. United States Naval Academy, Naval Postgraduate School, 2012 [Google Scholar]
  15. J.R. Davis, Handbook of thermal spray technology, ASM International, Materials Park, OH, USA, 2004 [Google Scholar]
  16. F.J. Hermanek, Thermal spray terminology and company origins, 1st edn. ASM International, Materials Park, OH, USA, 2001 [Google Scholar]
  17. R. Ghelichi, M. Guagliano, Coating by the Cold spraying processes: a state of the art. Frat Ed Integrità Strutt Ed Integrità Strutt 3 (2009) 30–44 [CrossRef] [Google Scholar]
  18. S.E. Tinashe, Conceptual Design of a Low Pressure Cold Gas Dynamic Spray (LPCGDS) System, University of the Witwatersrand (2010) [Google Scholar]
  19. H. Singh, T.S. Sidhu, S.B.S. Kalsi, J. Karthikeyan, Development of cold spraying from innovation to emerging future coating technology, J. Br. Soc. Mech. Sci. Eng. 35 (2013) 231–245 [CrossRef] [Google Scholar]
  20. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li et al., Cold spraying additive manufacturing and repair: fundamentals and applications, Addit. Manuf. 21 (2018) 628–650 [CrossRef] [Google Scholar]
  21. D.G. McCartney, H. Tabbara, S. Gu, P.H. Shipway, T.S. Price, Study on process optimization of cold gas spraying, J. Therm. Spray Technol. 20 (2010) 608–620 [Google Scholar]
  22. Y.K. Han, N. Birbilis, K. Spencer, M. Zhang, B.C. Muddle, Investigation of Cu coatings deposited by kinetic metallization, Mater. Charact. 61 (2010) 1167–1186 [CrossRef] [Google Scholar]
  23. F. Robitaille, M. Yandouzi, S. Hind, B. Jodoin, Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process, Surf. Coatings Technol. 203 (2009) 2954–2960 [CrossRef] [Google Scholar]
  24. M. Yandouzi, P. Richer, B. Jodoin, SiC particulate reinforced Al − 12Si alloy composite coatings produced by the pulsed gas dynamic spraying processes: microstructure and properties, Surf. Coat. Technol. 203 (2009) 3260–3270 [CrossRef] [Google Scholar]
  25. M. Yandouzi, H. Bu, M. Brochu, B. Jodoin, Nanostructured Al-based metal matrix composite coating production by pulsed gas dynamic spraying process, J. Therm. Spray Technol. 21 (2012) 609–619 [CrossRef] [Google Scholar]
  26. M. Winnicki, A. Ma, G. Dudzik, M. Rutkowska-gorczyca, M. Marciniak, K. Abramski, Numerical and experimental analysis of copper particles velocity in low-pressure cold spraying process, Surf. Coat. Technol. 268 (2015) 230–240 [CrossRef] [Google Scholar]
  27. D. Hanft, P. Glosse, S. Denneler, T. Berthold, M. Oomen, S.K. Id et al., The aerosol deposition method: a modified aerosol generation unit to improve coating quality. Material (Basel) 11 (2018) 1–11 [Google Scholar]
  28. H. Ashizawa, M. Kiyohara, Plasma exposure behavior of yttrium oxide film formed by aerosol deposition method, IEEE Trans. Semicond. Manuf. 30 (2017) 357–361 [CrossRef] [Google Scholar]
  29. A. Concustell, J. Henao, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, On the formation of metallic glass coatings by means of Cold Gas Spray technology, J. Alloys Compd. 651 (2015) 764–772 [CrossRef] [Google Scholar]
  30. D.P. Eason, A structure property processing comparison of cold rolled PM copper and cold gas dynamically sprayed copper, J. Powder Metall. Min. 01 (2012) 1–5 [CrossRef] [Google Scholar]
  31. M.R. Rokni, C.A. Widener, G.A. Crawford, M.K. West, An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition, Mater. Sci. Eng. A 625 (2015) 19–27 [CrossRef] [Google Scholar]
  32. Y. Zou, W. Qin, E. Irissou, J.-G. Legoux, S. Yue, J.A. Szpunar, Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: electron backscatter diffraction characterization, Scr. Mater. 61 (2009) 899–902 [CrossRef] [Google Scholar]
  33. D. Rafaja, T. Schucknecht, V. Klemm, A. Paul, H. Berek, Microstructural characterisation of titanium coatings deposited using cold gas spraying on Al2O3 substrates, Surf. Coatings Technol. 203 (2009) 3206–3213 [CrossRef] [Google Scholar]
  34. M.R. Rokni, C.A. Widener, G.A. Crawford, M.K. West, An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition, Mater. Sci. Eng. A 625 (2015) 19–27 [CrossRef] [Google Scholar]
  35. D. Giraud, Étude des composantes mécanique et métallurgique dans la liaison revêtement-substrat obtenue par projection dynamique par gaz froid pour les systèmes “Aluminium / Polyamide6, 6” et “Titane / TA6V” To cite this version: HAL Id: pastel-01073679 l ' É 2014 [Google Scholar]
  36. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, D. Helfritch, Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spraying processes, Appl. Surf. Sci. 219 (2003) 211–227 [CrossRef] [Google Scholar]
  37. X.L. Zhou, A.F. Chen, J.C. Liu, X.K. Wu, J.S. Zhang, Preparation of metallic coatings on polymer matrix composites by cold spraying, Surf. Coatings Technol. 206 (2011) 132–136 [CrossRef] [Google Scholar]
  38. V.K. Champagne, D. Helfritch, P. Leyman, S. Grendahl, B. Klotz, Interface material mixing formed by the deposition of copper on aluminum by means of the cold spraying processes, J. Therm. Spray Technol. 14 (2005) 330–334 [CrossRef] [Google Scholar]
  39. K.H. Ko, J.O. Choi, H. Lee, Intermixing and interfacial morphology of cold-sprayed Al coatings on steel, Mater. Lett. 136 (2014) 45–47 [CrossRef] [Google Scholar]
  40. A. Ganesan, M. Yamada, M. Fukumoto, Cold spraying coating deposition mechanism on the thermoplastic and thermosetting polymer substrates, J. Therm. Spray Technol. 22 (2013) 1275–1282 [CrossRef] [Google Scholar]
  41. D. Seo, M. Sayar, K. Ogawa, SiO2 and MoSi2 formation on Inconel 625 surface via SiC coating deposited by cold spraying, Surf. Coatings Technol. 206 (2012) 2851–2858 [CrossRef] [Google Scholar]
  42. T. Hussain, D.G. McCartney, P.H. Shipway, Bonding between aluminium and copper in cold spraying: story of asymmetry, Mater. Sci. Technol. 28 (2012) 1371–1378 [CrossRef] [Google Scholar]
  43. D.-Y. Kim, J.-J. Park, J.-G. Lee, D. Kim, S.J. Tark, S. Ahn et al., Cold spraying deposition of copper electrodes on silicon and glass substrates, J. Therm. Spray Technol. 22 (2013) 1092–1102 [CrossRef] [Google Scholar]
  44. H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, K.H. Ko, Interfacial studies between cold-sprayed WO3, Y2O3 films and Si substrate, Appl. Surf. Sci. 227 (2004) 244–249 [CrossRef] [Google Scholar]
  45. I. Burlacov, J. Jirkovský, L. Kavan, R. Ballhorn, R.B. Heimann, Cold gas dynamic spraying (CGDS) of TiO2 (anatase) powders onto poly(sulfone) substrates: microstructural characterisation and photocatalytic efficiency, J. Photochem. Photobiol. A: Chem. 187 (2007) 285–292 [CrossRef] [Google Scholar]
  46. A. Ganesan, J. Affi, M. Yamada, M. Fukumoto, Bonding behavior studies of cold sprayed copper coating on the PVC polymer substrate, Surf. Coatings Technol. 207 (2012) 262–269 [CrossRef] [Google Scholar]
  47. D. Zhang, P.H. Shipway, D.G. McCartney, Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation, J. Therm. Spray Technol. 14 (2005) 109–116 [CrossRef] [Google Scholar]
  48. P.C. King, S. Zahiri, M. Jahedi, J. Friend, Aluminium coating of lead zirconate titanate—a study of cold spraying variables, Surf. Coatings Technol. 205 (2010) 2016–2222 [CrossRef] [Google Scholar]
  49. P.C. King, A.J. Poole, S. Horne, R. de Nys, S. Gulizia, M.Z. Jahedi, Embedment of copper particles into polymers by cold spraying, Surf. Coatings Technol. 216 (2013) 60–67 [CrossRef] [Google Scholar]
  50. A.S. Alhulaifi, G.A. Buck, W.J. Arbegast, Numerical and experimental investigation of cold spraying gas dynamic effects for polymer coating, J. Therm. Spray Technol. 21 (2012) 852–862 [CrossRef] [Google Scholar]
  51. Y. Xu, I.M. Hutchings, Cold spraying deposition of thermoplastic powder, Surf. Coatings Technol. 201 (2006) 3044–3050 [CrossRef] [Google Scholar]
  52. L. Zhu, T.-C. Jen, Y.-T. Pan, H.-S. Chen, Particle bonding mechanism in cold gas dynamic spray: a three-dimensional approach, J. Therm. Spray Technol. 26 (2017) 1859–1873 [CrossRef] [Google Scholar]
  53. Y. Kim, S. Yang, J.-W. Lee, J.-O. Choi, S.-H. Ahn, C.S. Lee, Photovoltaic characteristics of a Dye-Sensitized Solar Cell (DSSC) fabricated by a Nano-Particle Deposition System (NPDS), Mater. Trans. 54 (2013) 2064–2068 [CrossRef] [Google Scholar]
  54. D.-M. Chun, S.-H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system, Acta Mater. 59 (2011) 2693–2703 [CrossRef] [Google Scholar]
  55. H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, K.H. Ko, Thin film coatings of WO3 by cold gas dynamic spray: a technical note, J. Therm. Spray Technol. 14 (2005) 183–186 [CrossRef] [Google Scholar]
  56. S.-Q. Fan, C.-J. Li, G.-J. Yang, L.-Z. Zhang, J.-C. Gao, Y.-X. Xi, Fabrication of nano-TiO2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature, J. Therm. Spray Technol. 16 (2007) 893–897 [CrossRef] [Google Scholar]
  57. M. Yamada, H. Isago, H. Nakano, M. Fukumoto, Cold spraying of TiO2 photocatalyst coating with nitrogen process gas, J. Therm. Spray Technol. 19 (2010) 1218–1223 [CrossRef] [Google Scholar]
  58. S.-Q. Fan, G.-J. Yang, C.-J. Li, G.-J. Liu, C.-X. Li, L.-Z. Zhang, Characterization of microstructure of Nano-TiO2 coating deposited by vacuum cold spraying, J. Therm. Spray Technol. 15 (2006) 513–517 [CrossRef] [Google Scholar]
  59. R.N. Raoelison, C. Verdy, H. Liao, Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications, Mater. Des. 133 (2017) 266–287 [CrossRef] [Google Scholar]
  60. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner et al., On parameter selection in cold spraying, J. Therm. Spray Technol. 20 (2011) 1161–1176 [CrossRef] [Google Scholar]
  61. M. Fukumoto, H. Terada, M. Mashiko, K. Sato, M. Yamada, E. Yamaguchi, Deposition of copper fine particle by cold spraying processes, Mater. Trans. 50 (2009) 1482–1488 [CrossRef] [Google Scholar]
  62. G.-J. Yang, C.-J. Li, S.-Q. Fan, Y.-Y. Wang, C.-X. Li, Influence of annealing on photocatalytic performance and adhesion of vacuum cold-sprayed nanostructured TiO2 coating, J. Therm. Spray Technol. 16 (2007) 873–880 [CrossRef] [Google Scholar]
  63. Y.-Y. Wang, L. Yi, C.-X. Li, G.-J. Yang, Y. Liu, C.-J. Li et al., Electrical and mechanical properties of nano-structured TiN coatings deposited by vacuum cold spraying coating microstructure control view project the cracking mechanism of thermally sprayed coatings view project electrical and mechanical properties of nano-, Vaccum 86 (2012) 953–959 [CrossRef] [Google Scholar]
  64. D.-M. Chun, C.-S. Kim, J.-O. Choi, G.-Y. Lee, C.S. Lee, S.-H. Ahn, Multilayer deposition of ceramic and metal at room temperature using nanoparticle deposition system (NPDS) and planarization process, Int. J. Adv. Manuf. Technol. 72 (2014) 41–46 [CrossRef] [Google Scholar]
  65. D.M. Chun, M.H. Kim, J.C. Lee, S.H. Ahn, TiO2 coating on metal and polymer substrates by nano-particle deposition system (NPDS), CIRP Ann. 57 (2008) 551–554 [CrossRef] [Google Scholar]
  66. D.-M. Chun, J.-O. Choi, C.S. Lee, I. Kanno, H. Kotera, S.-H. Ahn, Nano-particle deposition system (NPDS): low energy solvent-free dry spraying processes for direct patterning of metals and ceramics at room temperature, Int. J. Precis. Eng. Manuf. 13 (2012) 1107–1112 [CrossRef] [Google Scholar]
  67. S.-Q. Fan, C.-J. Li, G.-J. Yang, L.-Z. Zhang, J.-C. Gao, Y.-X. Xi, Fabrication of nano-TiO 2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature, J. Therm. Spray Technol. 16 (2007) 892–897 [Google Scholar]
  68. R. Kromer, R.N. Raoelison, C. Langlade, Y. Xie, M.P. Planche, T. Sapanathan et al., Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date, Addit. Manuf. 19 (2017) 134–159 [Google Scholar]
  69. J. Karthikeyan, Cold spraying Technology: International Status and USA Efforts (2004) 1–14 [Google Scholar]
  70. C.-J. Li, H.-T. Wang, Q. Zhang, G.-J. Yang, W.-Y. Li, H.L. Liao, Influence of spray materials and their surface oxidation on the critical velocity in cold spraying, J. Therm. Spray Technol. 19 (2010) 95–101 [CrossRef] [Google Scholar]
  71. C.-J. Li, W.-Y. Li, Deposition characteristics of titanium coating in cold spraying, Surf. Coatings Technol. 167 (2003) 278–283 [CrossRef] [Google Scholar]
  72. C.-J. Li, W.-Y. Li, Y.-Y. Wang, G.-J. Yang, H. Fukanuma, A theoretical model for prediction of deposition efficiency in cold spraying, Thin Solid Films 489 (2005) 79–85 [CrossRef] [Google Scholar]
  73. C.-J. Li, W.-Y. Li, H. Liao, Examination of the critical velocity for deposition of particles in cold spraying, J. Therm. Spray Technol. 15 (2006) 212–222 [CrossRef] [Google Scholar]
  74. J.-G. Legoux, E. Irissou, S. Desaulniers, J. Bobyn, B. Harvey, W. Wong, E. Gagnon, S. Yue, Characterization and performance evaluation of a helium recovery system designed for cold spraying, NRC Publ Arch (NPArC) 2010, 1–22 [Google Scholar]
  75. C.J. Sutcliffe, A. Papworth, C. Gallagher, P. Fox, R.H. Morgan, W. O'Neill et al., Cold gas dynamic manufacturing − a new approach to near-net shape metal component fabrication, Mater. Res. Soc. Proc. 758 (2003) 73–84 [Google Scholar]
  76. W. Wong, E. Irissou, A.N. Ryabinin, J. Legoux, S. Yue, Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings, J. Therm. Spray Technol. 20 (2011) 213–226 [CrossRef] [Google Scholar]
  77. S. Yin, X. Suo, H. Liao, Z. Guo, X. Wang, Significant influence of carrier gas temperature during the cold spraying processes, Surf. Eng. 30 (2014) 443–450 [CrossRef] [Google Scholar]
  78. S. Yin, Q. Liu, H. Liao, X. Wang, Effect of injection pressure on particle acceleration, dispersion and deposition in cold spraying, Comput. Mater. Sci. 90 (2014) 7–15 [CrossRef] [Google Scholar]
  79. S. Yin, Y. Xie, X. Suo, H. Liao, X. Wang, Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spraying, Mater. Lett. 138 (2015) 143–147 [CrossRef] [Google Scholar]
  80. T. Hussain, D.G. McCartney, P.H. Shipway, Impact phenomena in cold-spraying of titanium onto various ferrous alloys, Surf. Coatings Technol. 205 (2011) 5021–5027 [CrossRef] [Google Scholar]
  81. J. Wu, J. Yang, H. Fang, S. Yoon, C. Lee, The bond strength of Al-Si coating on mild steel by kinetic spraying deposition, Appl. Surf. Sci. 252 (2006) 7809–7814 [CrossRef] [Google Scholar]
  82. P. Richer, B. Jodoin, L. Ajdelsztajn, E.J. Lavernia, Substrate roughness and thickness effects on cold spraying nanocrystalline Al-Mg coatings, J. Therm. Spray Technol. 15 (2006) 246–254 [CrossRef] [Google Scholar]
  83. C.R. May, C. May, S. Marx, A. Paul, Cold spraying coatings on hard surfaces other commercial applications, n.d. [Google Scholar]
  84. K.-R. Ernst, J. Braeutigam, F. Gaertner, T. Klassen, Effect of substrate temperature on cold-gas-sprayed coatings on ceramic substrates, J. Therm. Spray Technol. 22 (2013) 422–432 [CrossRef] [Google Scholar]
  85. R. Kromer, S. Costil, J. Cormier, L. Berthe, P. Peyre, D. Courapied, Laser patterning pretreatment before thermal spraying: a technique to adapt and control the surface topography to thermomechanical loading and materials, J. Therm. Spray Technol. 25 (2016) 401–410 [CrossRef] [Google Scholar]
  86. R. Kromer, S. Costil, C. Verdy, S. Gojon, H. Liao, Laser surface texturing to enhance adhesion bond strength of spray coatings − cold spraying, wire-arc spraying, and atmospheric plasma spraying, Surf. Coatings Technol. 352 (2018) 642–653 [CrossRef] [Google Scholar]
  87. M. Yu, W.-Y. Li, F.F. Wang, X.K. Suo, H.L. Liao, Effect of particle and substrate preheating on particle deformation behavior in cold spraying, Surf. Coatings Technol. 220 (2013) 174–178 [CrossRef] [Google Scholar]
  88. S. Yin, X. Suo, Z. Guo, H. Liao, X. Wang, Deposition features of cold sprayed copper particles on preheated substrate, Surf. Coatings Technol. 268 (2015) 252–256 [CrossRef] [Google Scholar]
  89. Y. Xie, M.-P. Planche, R. Raoelison, H. Liao, X. Suo, P. Hervé, Effect of substrate preheating on adhesive strength of SS 316L cold spraying coatings, J. Therm. Spray Technol. 25 (2016) 123–130 [CrossRef] [Google Scholar]
  90. X.K. Suo, M. Yu, W.Y. Li, M.P. Planche, H.L. Liao, Effect of substrate preheating on bonding strength of cold-sprayed Mg coatings, J. Therm. Spray Technol. 21 (2012) 1091–1098 [CrossRef] [Google Scholar]
  91. S. Yin, X. Suo, Y. Xie, W. Li, R. Lupoi, H. Liao, Effect of substrate temperature on interfacial bonding for cold spraying of Ni onto Cu, J. Mater. Sci. 50 (2015) 7448–7457 [CrossRef] [Google Scholar]
  92. N.M. Chavan, M. Ramakrishna, P.S. Phani, D.S. Rao, G. Sundararajan, The influence of process parameters and heat treatment on the properties of cold sprayed silver coatings, Surf. Coatings Technol. 205 (2011) 4798–4807 [CrossRef] [Google Scholar]
  93. R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, W. O'Neill, Analysis of cold gas dynamically sprayed aluminium deposits, Mater. Lett. 58 (2004) 1317–1320 [CrossRef] [Google Scholar]
  94. Q. Wang, N. Birbilis, M.-X. Zhang, Interfacial structure between particles in an aluminum deposit produced by cold spraying, Mater. Lett. 65 (2011) 1576–1578 [CrossRef] [Google Scholar]
  95. C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, T.J. Eden, Effect of substrate surface roughening and cold spraying coating on the fatigue life of AA2024 specimens, Mater. Des. 54 (2014) 212–221 [CrossRef] [Google Scholar]
  96. K. Balani, T. Laha, A. Agarwal, J. Karthikeyan, N. Munroe, Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating, Surf. Coatings Technol. 195 (2005) 272–279 [CrossRef] [Google Scholar]
  97. L. Ajdelsztajn, A. Zúñiga, B. Jodoin, E.J. Lavernia, Cold gas dynamic spraying of a high temperature Al alloy, Surf. Coatings Technol. 201 (2006) 2109–2116 [CrossRef] [Google Scholar]
  98. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, E.J. Lavernia, Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings, Surf. Coatings Technol. 201 (2006) 3422–3429 [CrossRef] [Google Scholar]
  99. R. Ghelichi, S. Bagherifard, D. Mac Donald, M. Brochu, H. Jahed, B. Jodoin et al., Fatigue strength of Al alloy cold sprayed with nanocrystalline powders, Int. J. Fatigue 65 (2014) 51–57 [CrossRef] [Google Scholar]
  100. K. Spencer, M.-X. Zhang, Heat treatment of cold spraying coatings to form protective intermetallic layers, Scr. Mater. 61 (2009) 44–47 [CrossRef] [Google Scholar]
  101. Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li et al., Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy, Corros. Sci. 52 (2010) 3191–3197 [CrossRef] [Google Scholar]
  102. H. Bu, M. Yandouzi, C. Lu, B. Jodoin, Effect of heat treatment on the intermetallic layer of cold sprayed aluminum coatings on magnesium alloy, Surf. Coatings Technol. 205 (2011) 4665–4671 [CrossRef] [Google Scholar]
  103. A.P. Alkhimov, N.I. Nesterovich, A.N. Papyrin, Experimental investigation of supersonic two-phase flow over bodies, J. Appl. Mech. Tech. Phys. 23 (1982) 219–226 [CrossRef] [Google Scholar]
  104. H. Lee, H. Shin, S. Lee, K. Ko, Effect of gas pressure on Al coatings by cold gas dynamic spray, Mater. Lett. 62 (2008) 1579–1581 [CrossRef] [Google Scholar]
  105. T. Hussain, Cold spraying of titanium: a review of bonding mechanisms, microstructure and properties, Key Eng. Mater. Online 533 (2013) 53–90 [CrossRef] [Google Scholar]
  106. S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li et al., Deposition behavior of thermally softened copper particles in cold spraying, Acta Mater. 61 (2013) 5105–5118 [CrossRef] [Google Scholar]
  107. P.D. Eason, J.A. Fewkes, S.C. Kennett, T.J. Eden, K. Tello, M.J. Kaufman et al., On the characterization of bulk copper produced by cold gas dynamic spraying processesing in as fabricated and annealed conditions, Mater. Sci. Eng. A 528 (2011) 8174–8178 [CrossRef] [Google Scholar]
  108. H.-J. Choi, M. Lee, J.Y. Lee, Application of a cold spraying technique to the fabrication of a copper canister for the geological disposal of CANDU spent fuels, Nucl. Eng. Des. 240 (2010) 2714–2720 [CrossRef] [Google Scholar]
  109. M. Fukumoto, H. Terada, M. Mashiko, K. Sato, M. Yamada, E. Yamaguchi, Deposition of copper fine particle by cold spraying processes, Mater. Trans. 50 (2009) 1482–1488 [CrossRef] [Google Scholar]
  110. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa et al. Effect of Substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spraying processes, J. Therm. Spray Technol. 16 (2007) 643–650 [CrossRef] [Google Scholar]
  111. P. Poza, C.J. Múnez, M.A. Garrido-Maneiro, S. Vezzù, S. Rech, A. Trentin, Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis, Surf. Coatings Technol. 243 (2014) 51–57 [CrossRef] [Google Scholar]
  112. D. Levasseur, S. Yue, M. Brochu, Pressureless sintering of cold sprayed Inconel 718 deposit, Mater. Sci. Eng. A 556 (2012) 343–350 [CrossRef] [Google Scholar]
  113. X. Meng, J. Zhang, J. Zhao, Y. Liang, Y. Zhang, Influence of gas temperature on microstructure and properties of cold spraying 304SS coating, J. Mater. Sci. Technol. 27 (2011) 809–815 [CrossRef] [Google Scholar]
  114. A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Cold spraying deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment, Surf. Coatings Technol. 235 (2013) 283–289 [CrossRef] [Google Scholar]
  115. M. Villa, S. Dosta, J.M. Guilemany, Optimization of 316L stainless steel coatings on light alloys using Cold Gas Spray, Surf. Coatings Technol. 235 (2013) 220–225 [CrossRef] [Google Scholar]
  116. G. Bolelli, B. Bonferroni, H. Koivuluoto, L. Lusvarghi, P. Vuoristo, Depth-sensing indentation for assessing the mechanical properties of cold-sprayed Ta, Surf. Coatings Technol. 205 (2010) 2209–2217 [CrossRef] [Google Scholar]
  117. R.S. Lima, A. Kucuk, C.C. Berndt, J. Karthikeyan, C.M. Kay, J. Lindemann, Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium, J. Mater. Sci. Lett. 21 (2002) 1687–1689 [CrossRef] [Google Scholar]
  118. C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi, S.P. Ringer, Investigating the microstructure and composition of cold gas-dynamic spray (CGDS) Ti powder deposited on Al 6063 substrate, Surf. Coatings Technol. 204 (2010) 3739–3749 [CrossRef] [Google Scholar]
  119. H.-R. Wang, W.-Y. Li, L. Ma, J. Wang, Q. Wang, Corrosion behavior of cold sprayed titanium protective coating on 1Cr13 substrate in seawater, Surf. Coatings Technol. 201 (2007) 5203–5206 [CrossRef] [Google Scholar]
  120. S.H. Zahiri, C.I. Antonio, M. Jahedi, Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying, J. Mater. Process. Technol. 209 (2009) 922–929 [CrossRef] [Google Scholar]
  121. J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, I. Dlouhy, Influence of plasma and cold spraying deposited Ti Layers on high-cycle fatigue properties of Ti6Al4V substrates, Surf. Coatings Technol. 217 (2013) 23–33 [CrossRef] [Google Scholar]
  122. F. Robitaille, M. Yandouzi, S. Hind, B. Jodoin, Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process, Surf. Coatings Technol. 203 (2009) 2954–2960 [CrossRef] [Google Scholar]
  123. W.-Y. Li, C.-J. Li, G.-J. Yang, Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating, Appl. Surf. Sci. 257 (2010) 1516–1523 [CrossRef] [Google Scholar]
  124. W.-Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.-J. Li, et al. Effect of standoff distance on coating deposition characteristics in cold spraying, Mater Des. 29 (2008) 297–304 [CrossRef] [Google Scholar]
  125. J.G. Legoux, E. Irissou, C. Moreau, Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings, J. Therm. Spray Technol. 16 (2007) 619–626 [CrossRef] [Google Scholar]
  126. Z.B. Zhao, B.A. Gillispie, J.R. Smith, Coating deposition by the kinetic spraying processes, Surf. Coatings Technol. 200 (2006) 4746–4754 [CrossRef] [Google Scholar]
  127. T. Van, H. Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison et al., Kinetic spray coatings, Surf. Coatings Technol. 111 (1999) 62–71 [CrossRef] [Google Scholar]
  128. F. Raletz, M. Vardelle, G. Ezo'o, Critical particle velocity under cold spraying conditions, Surf. Coatings Technol. 201 (2006) 1942–1947 [CrossRef] [Google Scholar]
  129. C.-J. Li, W.-Y. Li, Y.-Y. Wang, Effect of Spray Angle on Deposition Characteristics in Cold spraying, ASM International, Therm. Spray, Ohio USA, 2003, pp. 91–96 [Google Scholar]
  130. H. Fukanuma, N. Ohno, B. Sun, R. Huang, In-flight particle velocity measurements with DPV-2000 in cold spraying, Surf. Coatings Technol. 201 (2006) 1935–1941. [CrossRef] [Google Scholar]
  131. W.-Y. Li, C. Zhang, H.-T. Wang, X.P. Guo, H.L. Liao, C.-J. Li et al., Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying, Appl. Surf. Sci. 253 (2007) 3557–3562 [CrossRef] [Google Scholar]
  132. M. Yandouzi, P. Richer, B. Jodoin, SiC particulate reinforced Al-12Si alloy composite coatings produced by the pulsed gas dynamic spraying processes: microstructure and properties, Surf. Coatings Technol. 203 (2009) 3260–3270 [CrossRef] [Google Scholar]
  133. X.-J. Ning, J.-H. Kim, H.-J. Kim, C. Lee, Characteristics and heat treatment of cold-sprayed Al–Sn binary alloy coatings, Appl. Surf. Sci. 255 (2009) 3933–3939 [CrossRef] [Google Scholar]
  134. X.-J. Ning, J.-H. Jang, H.-J. Kim, C.-J. Li, C. Lee, Cold spraying of Al-Sn binary alloy: Coating characteristics and particle bonding features, Surf. Coatings Technol. 202 (2008) 1681–1687 [CrossRef] [Google Scholar]
  135. E. Sansoucy, G.E. Kim, A.L. Moran, B. Jodoin, Mechanical characteristics of Al-Co-Ce coatings produced by the cold spraying processes, J. Therm. Spray Technol. 16 (2007) 651–660 [CrossRef] [Google Scholar]
  136. P. Coddet, C. Verdy, C. Coddet, F. Lecouturier, F. Debray, Mechanical properties of Cold spraying deposited NARloy-Z copper alloy, Surf. Coatings Technol. 232 (2013) 652–657 [CrossRef] [Google Scholar]
  137. S.V. Raj, C. Barrett, J. Karthikeyan, R. Garlick, Comparison of the cyclic oxidation behavior of cold sprayed CuCrAl-coated and uncoated GRCop-84 substrates for space launch vehicles, Surf. Coatings Technol. 201 (2007) 7222–7234 [CrossRef] [Google Scholar]
  138. W.-Y. Li, C.-J. Li, H. Liao, C. Coddet, Effect of heat treatment on the microstructure and microhardness of cold-sprayed tin bronze coating, Appl. Surf. Sci. 253 (2007) 5967–5971 [CrossRef] [Google Scholar]
  139. X. Guo, G. Zhang, W.-Y. Li, L. Dembinski, Y. Gao, H. Liao et al., Microstructure, microhardness and dry friction behavior of cold-sprayed tin bronze coatings, Appl. Surf. Sci. 254 (2007) 1482–1488 [CrossRef] [Google Scholar]
  140. N. Cinca, E. López, S. Dosta, J.M. Guilemany, Study of stellite-6 deposition by cold gas spraying, Surf. Coatings Technol. 232 (2013) 891–898 [CrossRef] [Google Scholar]
  141. N. Cinca, J.M. Guilemany, Structural and properties characterization of stellite coatings obtained by cold gas spraying, Surf. Coatings Technol. 220 (2013) 90–97 [CrossRef] [Google Scholar]
  142. S. Rech, A. Surpi, S. Vezzù, A. Patelli, A. Trentin, J. Glor, et al., Cold-spray deposition of Ti2AlC coatings. Vacuum 94 (2013) 69–73 [CrossRef] [Google Scholar]
  143. D.-M. Chun, J.-O. Choi, C.S. Lee, S.-H. Ahn, Effect of stand-off distance for cold gas spraying of fine ceramic particles (<5 µm) under low vacuum and room temperature using nano-particle deposition system (NPDS), Surf. Coatings Technol. 206 (2012) 2125–2132 [CrossRef] [Google Scholar]
  144. P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying, Surf. Coatings Technol. 204 (2010) 3962–3974 [CrossRef] [Google Scholar]
  145. A. Bonadei, T. Marrocco, Cold sprayed MCrAlY + X coating for gas turbine blades and vanes, Surf. Coatings Technol. 242 (2014) 200–206 [CrossRef] [Google Scholar]
  146. G.-C. Ji, H.-T. Wang, X. Chen, X.-B. Bai, Z.-X. Dong, F-G. Yang, Characterization of cold-sprayed multimodal WC-12Co coating, Surf. Coatings Technol. 235 (2013) 536–543 [CrossRef] [Google Scholar]
  147. H.-J. Kim, C.-H. Lee, S-Y. Hwang, Fabrication of WC-Co coatings by cold spraying deposition, Surf. Coatings Technol. 191 (2005) 335–340 [CrossRef] [Google Scholar]
  148. A.S.M. Ang, C.C. Berndt, P. Cheang, Deposition effects of WC particle size on cold sprayed WC-Co coatings, Surf. Coatings Technol. 205 (2011) 3260–3267 [CrossRef] [Google Scholar]
  149. S. Dosta, M. Couto, J.M. Guilemany, Cold spraying deposition of a WC-25Co cermet onto Al7075-T6 and carbon steel substrates, Acta Mater. 61 (2013) 643–652 [CrossRef] [Google Scholar]
  150. M. Yandouzi, E. Sansoucy, L. Ajdelsztajn, B. Jodoin, WC-based cermet coatings produced by cold gas dynamic and pulsed gas dynamic spraying processes, Surf. Coatings Technol. 202 (2007) 382–390 [CrossRef] [Google Scholar]
  151. W.-Y. Li, C.-J. Li, Optimal design of a novel cold spraying gun nozzle at a limited space, J ThermSpray Technol. 14 (2005) 391–396 [Google Scholar]
  152. J. Karthikeyan, Development of oxidation resistant coatings on GRCop-84 substrates by cold spraying processes. NASA/CR 2007, 214706 [Google Scholar]
  153. V.K. Champagne, P.F. Leyman, D. Helfritch, Magnesium repair by cold spraying, Plant. Surf. Finish. 95 (2008) 34 [Google Scholar]
  154. B. DeForce, T. Eden, J. Potter, V. Champagne, P. Leyman, D. Helfritch, Application of aluminum coatings for the corrosion protection of magnesium by cold spraying, TRI Serv. Corros. (2007) 1–16 [Google Scholar]
  155. J. Villafuerte, Current and future applications of cold spraying technology, Met. Finish. 108 (2010) 37–39 [CrossRef] [Google Scholar]
  156. A. Shkodkin, A. Kashirin, O. Klyuev, T. Buzdygar, Peculiarities of Gas Dynamic Spray Applications in Russia, 2010. [Google Scholar]
  157. A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Potential of cold gas dynamic spray as additive manufacturing technology, Int. J. Adv. Manuf. Technol. 69 (2013) 2269–2278 [CrossRef] [Google Scholar]
  158. S. Yoon, H. Kim, C. Lee, Fabrication of automotive heat exchanger using kinetic spraying process, Surf. Coat. Technol. 201 (2007) 9524–9932 [CrossRef] [Google Scholar]
  159. A. Choudhuri, P.S. Mohanty, J. Karthikeyan, Bioceramic composite coatings by cold spraying technology, Addit. Manuf. Process (2009) [Google Scholar]
  160. K. Balani, A. Agarwal, S. Seal, J. Karthikeyan, Transmission electron microscopy of cold sprayed 1100 aluminum coating, Scr. Mater. 53 (2005) 845–850 [CrossRef] [Google Scholar]
  161. V.K. Champagne, The repair of magnesium rotorcraft components by cold spraying, J. Fail. Anal. Prev. 8 (2008) 164–175 [CrossRef] [Google Scholar]
  162. H. Assadi, H. Kreye, F. Gärtner, T. Klassen, Cold spraying − a materials perspective, Acta Mater. 116 (2016) 382–407 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.