Open Access
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 9
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2020003
Published online 28 February 2020
  1. M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Ann. Manufactur. Technol. 52 (2003) 521–542 [CrossRef] [Google Scholar]
  2. A.E. Tekkaya, N.B. Khalifa, G. Grzancic, R. Hölker, Forming of lightweight metal components: need for new technologies, Proc. Eng. 81 (2014) 28–37 [CrossRef] [Google Scholar]
  3. G. Ingarao, R. Di Lorenzo, Design of complex sheet metal forming processes: a new computer aided progressive approach, Int. J. Mater. Form. 3 (2010) 21–24 [CrossRef] [Google Scholar]
  4. M. Gruber, N. Lebaal, S. Roth, N. Harb, P. Sterionow, F. Peyraut, Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach, Int. J. Mater. Form. 9 (2014) 21–33 [CrossRef] [Google Scholar]
  5. M. Schaper, Y. Lizunkova, M. Vucetic, T. Cahyono, H. Hetzner, S. Opel, J. Schneider, T. Koch, B. Plugge, Sheet-bulk metal forming a new process for the production of sheet metal parts with functional components, Metal. Min. Ind. 3 (2011) 7 [Google Scholar]
  6. M. Merklein, J.M. Allwood, B.A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, CIRP Ann. Manufactur. Technol. 61 (2012) 725–745 [CrossRef] [Google Scholar]
  7. Y. Çan, T. Altınbalık, H.E. Akata, A study of lateral extrusion of gear like elements and splines, J. Mater. Process. Technol. 166 (2005) 128–134 [CrossRef] [Google Scholar]
  8. G.L. Damoulis, E. Gomes, G.F. Batalha, New trends in sheet metal forming analysis and optimization trough the use of optical measurement technology to control springback, Int. J. Mater. Form. 3 (2009) 29–39 [CrossRef] [Google Scholar]
  9. Y. Oyachi, J.M. Allwood, Characterizing the class of local metal sheet thickening processes, in 10th ICTP-International Conference on Technology of Plasticity, Düsseldorf: Steel research international, Wiley, 2011, 1025–1030 [Google Scholar]
  10. V. Spitas, T. Costopoulos, C. Sopitas, Increasing the strength of standard involute gear teeth with novel circular root fillet design, Am. J. Appl. Sci. 2 (2005) 1058–1064 [CrossRef] [Google Scholar]
  11. K. Lange, M. Kammerer, K. Pöhlandt, J. Schöck, Fließpressen − wirtschaftliche Fertigung metallischer Präzisionswerkstücke (Springer, Berlin, 2008) [Google Scholar]
  12. B.A. Behrens, E. Doege, Cold sizing of cold- and hot-formed gears, CIRP Ann. 53 (2004) 239–242 [CrossRef] [Google Scholar]
  13. M. Loeffler, T. Schneider, U. Vierzigmann, U. Engel, M. Merklein, Locally adapted tribological conditions as a method for influencing the material flow in sheet-bulk metal forming processes, Key Eng. Mater. 639 (2015) 267–274 [CrossRef] [Google Scholar]
  14. R. Kopp, Some current development trends in metal-forming technology, J. Mater. Process. Technol. 60 (1996) 1–9 [CrossRef] [Google Scholar]
  15. U. Vierzigmann, J. Koch, M. Merklein, U. Engel, Material flow in sheet-bulk metal forming, Key Eng. Mater. 504–506 (2012) 1035–1040 [CrossRef] [Google Scholar]
  16. D. Gröbel, Herstellung von Nebenformelementen unterschiedlicher Geometrie an Blechen mittels Fließpressverfahren der Blechmassivumformung, Dissertation, FAU, 2017 [Google Scholar]
  17. DIN Deutsches Institut für Normung e.V., DIN 50106–Prüfung metallischer Werkstoffe − Druckversuch bei Raumtemperatur, 2016 [Google Scholar]
  18. J.E. Hockett, O.D. Sherby, Large strain deformation of polycristalline metals at low homologous temperatures, J. Mech. Phys. Solids 23 (1975) 87–98 [CrossRef] [Google Scholar]
  19. D. Gröbel, J. Koch, H.U. Vierzigmann, U. Engel, M. Merklein, Investigations and approaches on material flow of non-uniform arranged cavities in sheet bulk metal forming processes, in ICTP:11th International Conference on Technology of Plasticity. ICTP, 2014 [Google Scholar]
  20. P. Groche, D. Fritsche, E.A. Tekkaya, J.M. Allwood, G. Hirt, R. Neugebauer, Incremental bulk metal forming, CIRP Ann. 56 (2007) 635–656 [CrossRef] [Google Scholar]
  21. H. Schafstall, Verbesserung der Simulationsgenauigkeit ausgewählter Massivumformverfahren durch eine adaptive Reibwertvorgabe. Shaker, Aachen, 1999 [Google Scholar]
  22. A.E. Tekkaya, A guide for validation of FE-simulations in bulk metal forming, Arab. J. Sci. Eng. 30 (2005) 113–136 [Google Scholar]
  23. DIN Deutsches Institut für Normung e.V., DIN EN ISO 14577-1 − Metallische Werkstoffe − Instrumentierte Eindringprüfung zur Bestimmung der Härte und anderer Werkstoffparameter − Teil 1: Prüfverfahren, 2012 [Google Scholar]
  24. M.P. Groover, Fundamentals of modern manufacturing: materials processes, and systems (John Wiley & Sons, 2007) [Google Scholar]
  25. K. Mori, T. Nakano, State-of-the-art of plate forging in Japan, Prod. Eng. 10 (2016) 81–91 [CrossRef] [Google Scholar]
  26. M. Löffler, Steuerung von Blechmassivumformprozessen durch maßgeschneiderte tribologische Systeme (2017) [Google Scholar]
  27. T. Altan, R. Miller, Allen, Design for forming and other near net shape manufacturing processes, Ann. CIRP 39 (1990) 609–620 [CrossRef] [Google Scholar]
  28. E. Brinksmeier, O. Riemer, S. Twardy, Tribological behavior of micro structured surfaces for micro forming tools, Int. J. Mach. Tools Manuf. 50 (2010) 425–430 [CrossRef] [Google Scholar]
  29. M. Merklein, M. Löffler, D. Gröbel, J. Henneberg, Investigation on blasted tool surfaces as a measure for material flow control in sheet-bulk metal forming, Manufactur. Rev. 6 (2019) 10 [CrossRef] [Google Scholar]
  30. M. Löffler, D. Groebel, U. Engel, K. Andreas, M. Merklein, Analysis of effectiveness of locally adapted tribological conditions for improving product quality in sheet-bulk metal forming, Appl. Mech. Mater. 794 (2015) 81–88 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.