Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 20
Number of page(s) 28
Published online 23 June 2020
  1. B. Mohan, A. Rajadurai, K.G. Satyanarayana, Electric discharge machining of Al-SiC metal matrix composites using rotary tube electrode, J. Mater. Process. Technol. 153–154 (2004) 978–985 [CrossRef] [Google Scholar]
  2. D. Kanagarajan, R. Karthikeyan, K. Palanikumar, P. Sivaraj, Influence of process parameters on electric discharge machining of WC/30%Co composites, Proc. Inst. Mech. Eng. B 222 (2008) 807–815 [CrossRef] [Google Scholar]
  3. V. Gohil, Y.M. Puri, Statistical analysis of material removal rate and surface roughness in electrical discharge turning of titanium alloy (Ti-6Al-4V), Proc. Inst. Mech. Eng. B 232 (2016) 1603–1614 [CrossRef] [Google Scholar]
  4. O. Belgassim, A. Abusaada, Investigation of the influence of EDM parameters on the overcut for AISI D3 tool steel, Proc. Inst. Mech. Eng. B 226 (2011) 365–370 [CrossRef] [Google Scholar]
  5. C.P.M. Mohanty, P.S. Satpathy, S. Mahapatra, M.R. Singh, Optimization of cryo-treated EDM variables using TOPSIS-based TLBO algorithm, Sādhanā 43 (2018) 51 [Google Scholar]
  6. C.P.S. Mohanty, S. Mahapatra, M.R. Singh, An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm, Eng. Sci. Technol. 20 (2017) 552–562 [Google Scholar]
  7. S.H. Lee, X.P. Li, Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide, Journal of Materials Processing Technology 115 (2001) 344–358 [CrossRef] [Google Scholar]
  8. M. Bhaumik, K. Maity, Effect of different tool materials during EDM performance of titanium grade 6 alloy, Eng. Sci. Technol. 21 (2018) 507–516 [Google Scholar]
  9. D. Rahul, K. Mishra, S. Datta, M. Masanta, Effects of tool electrode on EDM performance of Ti-6Al-4V, Silicon 10 (2018) 2263–2277 [CrossRef] [Google Scholar]
  10. M.H. Raza, A. Wasim, M.A. Ali, S. Hussain, M. Jahanzaib, Investigating the effects of different electrodes on Al6061-SiC-7.5 wt% during electric discharge machining, Int. J. Adv. Manufactur. Technol. 99 (2018) 3017–3034 [CrossRef] [Google Scholar]
  11. S. Kumari, S. Datta, M. Masanta, G. Nandi, P.K. Pal, Electro-discharge machining of Inconel 825 super alloy: effects of tool material and dielectric flushing, Silicon 10 (2018) 2079–2099 [CrossRef] [Google Scholar]
  12. M.B.A. Ndaliman, A. Khan, M.Y. Ali, Influence of dielectric fluids on surface properties of electrical discharge machined titanium alloy, Proc. Inst. Mech. Eng. 227 (2013) 1310–1316 [CrossRef] [Google Scholar]
  13. Y. Zhang, Y. Liu, Y. Shen, R. Ji, Z. Li, C. Zheng, Investigation on the influence of the dielectrics on the material removal characteristics of EDM, J. Mater. Process. Technol. 214 (2014) 1052–1061 [CrossRef] [Google Scholar]
  14. P. Sadagopan, B. Mouliprasanth, Investigation on the influence of different types of dielectrics in electrical discharge machining, Int. J. Adv. Manufactur. Technol. 92 (2017) 277–291 [CrossRef] [Google Scholar]
  15. C. Li, X. Xu, Y. Li, H. Tong, S. Ding, Q. Kong, L. Zhao, J. Ding, Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel alloy, J. Alloys Compd. 783 (2019) 95–102 [CrossRef] [Google Scholar]
  16. K.-T. Chiang, F.-P. Chang, D.-C. Tsai, Modeling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology, J. Mater. Process. Technol. 182 (2007) 525–533 [CrossRef] [Google Scholar]
  17. S.S. Habib, Study of the parameters in electrical discharge machining through response surface methodology approach, Appl. Math. Model. 33 (2009) 4397–4407 [CrossRef] [Google Scholar]
  18. S. Prabhu, M. Uma, B.K. Vinayagam, Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling, J. Br. Soc. Mech. Sci. Eng. 36 (2013) 637–652 [CrossRef] [Google Scholar]
  19. M. Hourmand, S. Farahany, A.A.D. Sarhan, M.Y. Noordin, Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach, Int. J. Adv. Manufactur. Technol. 77 (2014) 831–838 [CrossRef] [Google Scholar]
  20. R.V.H. Barenji, H. Pourasl, V.M. Khojastehnezhad, Electrical discharge machining of the AISI D6 tool steel: prediction and modeling of the material removal rate and tool wear ratio. Precis. Eng. 45 (2016) 435–444 [CrossRef] [Google Scholar]
  21. A. Soundhar, H.A. Zubar, M.T.B.H. Sultan, J. Kandasamy, Dataset on optimization of EDM machining parameters by using central composite design, Data Brief 23 (2019) 103671 [CrossRef] [Google Scholar]
  22. D. Mandal, S.K. Pal, P. Saha, Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II, J. Mater. Process. Technol. 186 (2007) 154–162 [CrossRef] [Google Scholar]
  23. A.P.D. Markopoulos, E. Manolakos, N.M. Vaxevanidis, Artificial neural network models for the prediction of surface roughness in electrical discharge machining, J. Intell. Manufactur. 19 (2008) 283–292 [CrossRef] [Google Scholar]
  24. M.K. Pradhan, R. Das, C.K. Biswas, Comparisons of neural network models on surface roughness in electrical discharge machining, Proc. Inst. Mech. Eng. B 223 (2009) 801–808 [CrossRef] [Google Scholar]
  25. S.S. Sidhu, A. Batish, S. Kumar, Neural network-based modeling to predict residual stresses during electric discharge machining of Al/SiC metal matrix composites, Proc. Inst. Mech. Eng. B 227 (2013) 1679–1692 [CrossRef] [Google Scholar]
  26. S. Kumar, A. Batish, R. Singh, T.P. Singh, A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys, J. Mech. Sci. Technol. 28 (2014) 2831–2844 [CrossRef] [Google Scholar]
  27. P. Ong, C.H. Chong, Bin M.Z.W. Rahim, K.C. Lee, K. Sia, M.A.H. Ahmad, Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond, J. Intell. Manufactur. (2018) doi:10.1007/s10845-018-1443-6 [Google Scholar]
  28. M. Lin, C. Tsao, C. Hsu, A. Chiou, P. Huang, Y. Lin, Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method, Trans. Nonferrous Metals Soc. China 23 (2013) 661–666 [CrossRef] [Google Scholar]
  29. A.M. Nikalje, A. Kumar, K.V.S. Srinadh, Influence of parameters and optimization of EDM performance measures on MDN 300 steel using Taguchi method, Int. J. Adv. Manufactur. Technol. 69 (2013) 41–49 [CrossRef] [Google Scholar]
  30. L. Tang, Y.F. Guo, Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel, Int. J. Adv. Manufactur. Technol. 70 (2013) 1369–1376 [CrossRef] [Google Scholar]
  31. V. Gaikwad, V.S. Jatti, Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi's method, J. King Saud Univ. 30 (2018) 266–272 [CrossRef] [Google Scholar]
  32. J.H. Jung, W.T. Kwon, Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis, J. Mech. Sci. Technol. 24 (2010) 1083–1090 [CrossRef] [Google Scholar]
  33. S. Singh, Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3p/20P composites by grey relational analysis, Int. J. Adv. Manufactur. Technol. 63 (2012) 1191–1202 [CrossRef] [Google Scholar]
  34. U.S. Yadav, V. Yadava, Experimental modeling and multiobjective optimization of electrical discharge drilling of aerospace superalloy material, Proc. Inst. Mech. Eng. B 229 (2014) 1764–1780 [CrossRef] [Google Scholar]
  35. R. Khanna, A. Kumar, M.P. Garg, A. Singh, N. Sharma, Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory, J. Ind. Eng. Int. 11 (2015) 459–472 [CrossRef] [Google Scholar]
  36. L. Selvarajan, M. Manohar, U.A. Kumar, P. Dhinakaran, Modelling and experimental investigation of process parameters in EDM of Si3N4-TiN composites using GRA-RSM, J. Mech. Sci. Technol. 31 (2017) 111–122 [CrossRef] [Google Scholar]
  37. C.-J. Tzeng, R.-Y. Chen, Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach, Int. J. Precis. Eng. Manufactur. 14 (2013) 709–717 [CrossRef] [Google Scholar]
  38. S. Gopalakannan, T. Senthilvelan, Application of response surface method on machining of Al-SiC nano-composites, Measurement 46 (2013) 2705–2715 [CrossRef] [Google Scholar]
  39. H.A.M. Hegab, H. Gadallah, A.K. Esawi, Modeling and optimization of Electrical Discharge Machining (EDM) using statistical design, Manufactur. Rev. 2 (2015) 21 [CrossRef] [Google Scholar]
  40. R. Swiercz, D. Oniszczuk-Świercz, T. Chmielewski, Multi-response optimization of electrical discharge machining using the desirability function, Micromachines 10 (2019) 72 [CrossRef] [Google Scholar]
  41. Jagadish, A. Ray, Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA), Int. J. Adv. Manufactur. Technol. 87 (2015) 1299–1311 [CrossRef] [Google Scholar]
  42. S.N. Sahu, N.C. Nayak, Multi-criteria decision making with PCA in EDM of A2 tool steel. Mater. Today 5 (2018) 18641–18648 [Google Scholar]
  43. Y. Yildiz, M.M. Sundaram, K.P. Rajurkar, Statistical analysis and optimization study on the machinability of beryllium-copper alloy in electro discharge machining, Proc. Inst. Mech. Eng. B 226 (2012) 1847–1861 [CrossRef] [Google Scholar]
  44. T. Muthuramalingam, B. Mohan, Influence of discharge current pulse on machinability in electrical discharge machining, Mater. Manufactur. Processes 28 (2013) 375–380 [CrossRef] [Google Scholar]
  45. A. Torres, I. Puertas, C.J. Luis, EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes, Int. J. Adv. Manufactur. Technol. 84 (2015) 2671–2688 [Google Scholar]
  46. Rahul, S. Datta, B.B. Biswal, S.S. Mahapatra, Machinability analysis of Inconel 601, 625, 718 and 825 during electro-discharge machining: on evaluation of optimal parameters setting, Measurement 137 (2019) 382–400 [CrossRef] [Google Scholar]
  47. C.P.S. Mohanty, S. Mahapatra, J. Sahu, Parametric optimisation of electrical discharge machining process: a numerical approach, Int. J. Ind. Syst. Eng. 22 (2016) 207–244 [Google Scholar]
  48. J. Sahu, S.S. Mahapatra, C.P. Mohanty, Multi-response optimisation of EDM parameters using data envelopment analysis, Int. J. Product. Qual. Manag. 15 (2015) 309–334 [CrossRef] [Google Scholar]
  49. C.P.S. Mohanty, S. Mahapatra, M.R. Singh, A particle swarm approach for multi-objective optimization of electrical discharge machining process, J. Intell. Manufactur. 27 (2014) 1171–1190 [CrossRef] [Google Scholar]
  50. P. Mukhopadhyay, S. Adhikary, A.K. Samanta, S. Maiti, S. Khan, S. Mudi, External force assisted electro discharge machining of SS 316, Mater. Today 19 (2019) 626–629 [Google Scholar]
  51. N.R. Costa, J. Lourenço, Z.L. Pereira, Desirability function approach: a review and performance evaluation in adverse conditions, Chemometr. Intell. Lab. Syst. 107 (2011) 234–244 [CrossRef] [Google Scholar]
  52. G. Skrabalak, Influence of electrode tool length on the micro EDM drilling performance, Proc. CIRP 68 (2018) 594–598 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.