Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 19
Number of page(s) 9
Published online 17 June 2020
  1. H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bӧnisch, A.S. Volegov, M. Calin, J. Eckert, M.S. Dargusch, Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting, Mater. Sci. Eng. A 688 (2017) 20–26 [CrossRef] [Google Scholar]
  2. S. Ehtemam-Haghighi, K. Prashanth, H. Attar, A.K. Chaubey, G. Cao, L.C. Zhang, Evaluation of mechanical and wear properties of Ti-xNb-7Fe alloys designed for biomedical applications, Mater. Des. 111 (2016) 592–599 [CrossRef] [Google Scholar]
  3. P.A.B. Kuroda, M.L. Lourenço, D.R.N. Correa, C.R. Grandini, Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti–20Zr–Mo alloys system for biomedical applications, J. Alloys and Comp. 8125 (2020) Article 152108 [Google Scholar]
  4. F.D. Quadros, P.A.B. Kuroda, K.d.J. Sousa, T.A.G. Donato, C.R. Grandini, Preparation, structural and microstructural characterization of Ti-25Ta-10Zr alloy for biomedical applications. J. Mater. Res. Tech. 8 (2019) 4108–4114 [CrossRef] [Google Scholar]
  5. T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, I.L. Muller, Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corros. Sci. 53 (2011) 1786–1793 [CrossRef] [Google Scholar]
  6. T. Lee, S. Lee, I. Kim, Y.H. Moon, H.S. Kim, C. H. Park, Breaking the limit of Young's modulus in low-cost Ti–Nb–Zr alloy for biomedical implant applications, J. Alloys Comp. 828 (2020) 154401 [CrossRef] [Google Scholar]
  7. I.V. Okulov, A. Volegov, H. Attar, M. Bönisch, S. Ehtemam-Haghighi, M. Calin, J. Eckert, Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications, J. Mech. Behav. Biomed. Mater. 65 (2017) 866–871 [CrossRef] [Google Scholar]
  8. M. Fellah, N. Hezil, M. Z. Touhami, A. Obrosov, S. Weiß, E. B. Kashkarov, A.M. Lider, A. Montagne, A. Iost, Enhanced structural and tribological performance of nanostructured Ti-15Nb alloy for biomedical applications, Results Phys. 15 (2019) 102767 [CrossRef] [Google Scholar]
  9. N.B. Hua, Z.L. Liao, W.Z. Chen, Y.T. Huang, T. Zhang, Effects of noble elements on the glass-forming ability, mechanical property, electrochemical behavior and tribocorrosion resistance of Ni- and Cu-free Zr-Al-Co bulk metallic glass, J. Alloys Compd. 725 (2017) 403–414 [CrossRef] [Google Scholar]
  10. Y. Liu, S. Pang, W. Yang, N. Hua, P.K. Liaw, T. Zhang. Tribological behaviors of a Ni-free Ti-based bulk metallic glass in air and a simulated physiological environment, J. Alloys Compd. 766 (2018) 1030–1036 [CrossRef] [Google Scholar]
  11. A. Ataee, Y. Li, C. Wen, A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds, Acta Biomater. 971 (2019) 587–596 [CrossRef] [Google Scholar]
  12. A. Srivastav, An overview of metallic biomaterials for bone support and replacement, in: A. Laskovski (Ed.), Biomedical Engineering, Trends in Materials Science, InTech 2011, pp. 153–168 [Google Scholar]
  13. M. Geetha, A. Singh, R. Asokamani, A. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–a review, Prog. Mater. Sci. 54 (2009) 397–425 [CrossRef] [Google Scholar]
  14. H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, M.S. Dargusch, Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: advantages, challenges and opinion for future development, J. Alloys Comp. 827 (2020) Article 154263 [CrossRef] [Google Scholar]
  15. G. Singh, N. Sharma, D. Kumar, H. Hegab, Design, development and tribological characterization of Ti–6Al–4V/hydroxyapatite composite for bio-implant applications, Mater. Chem. Phys. 243 (2020) Article 122662 [CrossRef] [Google Scholar]
  16. Prakash, S. Singh, S. Ramakrishna, G. Królczyk, C.H. Le, Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications, J. Alloys Comp. 824 (2020) Article 153774 [CrossRef] [Google Scholar]
  17. H.Y. Hu, L. Zhang, Z.Y. He, Y.H. Jiang, J. Tan, Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications, Mater. Sci. Eng. C 98 (2019) 279–287 [CrossRef] [Google Scholar]
  18. Y. Wang, C. Wong, C. Wen, P. Hodgson, Y. Li, Ti-SrO metal matrix composites for bone implant materials, J. Mater. Chem. B 2 (2014) 5854–5861 [CrossRef] [Google Scholar]
  19. Han, Y. Li, X. Wu, S. Ren, X. San, X. Zhu, Ti/SiO2 composites fabricated by powder metallurgy for orthopedic implant, Mater. Des. 49 (2013) 76–80 [CrossRef] [Google Scholar]
  20. Y. Li, K.S. Munir, J. Lin, C. Wen, Titanium-niobium pentoxide composites for biomedical applications, Bioact. Mater. 1 (2016) 127–131 [CrossRef] [Google Scholar]
  21. J.O. Abe, A.P.I. Popoola, O.M. Popoola, Consolidation of Ti6Al4V alloy and refractory nitride nanoparticles by spark plasma sintering method: Microstructure, mechanical, corrosion and oxidation characteristics, Mater. Sci. Eng. A 774 (2020) 138920 [CrossRef] [Google Scholar]
  22. W.R. Matizamhuka, Spark plasma sintering (SPS) − an advanced sintering technique for structural nanocomposite materials, J. S. Afr. Inst. Min. Metall. 16 (2016), 1171–1180 [CrossRef] [Google Scholar]
  23. M.E. Maja, O.E. Falodun, B.A. Obadele, S.R. Oke, P.A. Olubambi, Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite, Cer. Inter. 44 (2018) 4419–4425 [CrossRef] [Google Scholar]
  24. M.O. Okoro, R. Machaka, S.S. Lephuthing, S.R. Oke, M.A. Awotunde, P.A. Olubambi, Nanoindentation studies of the mechanical behaviours of spark plasma sintered multiwall carbon nanotubes reinforced Ti6Al4V nanocomposites, Mater. Sci. Eng. A 765 (2019) 138320 [CrossRef] [Google Scholar]
  25. S. Ehtemam-Haghighi, G. Cao, L. Zhang, Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions, J. Alloys Comp. 692 (2017) 892–897 [CrossRef] [Google Scholar]
  26. A.S. Namini, M. Azadbeh, M.S. Asl, Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiB composites, Adv. Powd. Tech. 28 (2017) 1564–1572 [CrossRef] [Google Scholar]
  27. N. Fujisawa, M. Łukomski, Nanoindentation near the edge of a viscoelastic solid with a rough surface, Mater. Des. 184 (2019) Article 108174 [CrossRef] [Google Scholar]
  28. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583 [NASA ADS] [CrossRef] [Google Scholar]
  29. M. Masanta, S.M. Shariff, A. Roy Choudhury, Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2-TiC-Al2O3 composite coating developed by SHS and laser cladding, Mater. Sci. Eng. A 528 (2011) 5327–5335 [CrossRef] [Google Scholar]
  30. K.K. Alaneme, E.A. Okotete, A.V. Fajemisin, M.O. Bodunrin, Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review, Arab J. Bas. Appl. Sci. 26 (2019) 311–330 [Google Scholar]
  31. O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, P.A. Olubambi, Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys, J. Alloys Comp. 736 (2018) 202–210. [CrossRef] [Google Scholar]
  32. J. Xu, G.d. Wang, X. Lu, L. Liu, P. Munroe, Z.H. Xie, Mechanical and corrosion-resistant properties of Ti-Nb-Si-N nanocomposite films prepared by a double glow discharge plasma technique, Ceram. Int. 40 (2014) 8621–8630 [CrossRef] [Google Scholar]
  33. A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Surinach, M.D. Baro, S. Gonzalez, E. Ibanez, L. Barrios, C. Nogues, Novel TieZreHfeFe nanostructured alloy for biomedical applications, Mater. 6 (2013) 4930–4945 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.