Open Access
Review
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 18
Number of page(s) 14
DOI https://doi.org/10.1051/mfreview/2020015
Published online 03 June 2020
  1. L. Guo, X. Fan, G. Yu, H. Yang, Microstructure control techniques in primary hot working of titanium alloy bars: a review, Chin. J. Aeronaut. 29 (2016) 30–40 [CrossRef] [Google Scholar]
  2. L. Li, M.Q. Li, J. Luo, Mechanism in the β phase evolution during hot deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr with a transformed microstructure, Acta Mater. 94 (2015) 36–45 [CrossRef] [Google Scholar]
  3. P. Gao, H. Yang, X. Fan, S. Zhu, Unified modeling of flow softening and globularization for hot working of two-phase titanium alloy with a lamellar colony microstructure, J. Alloys Comp. 600 (2014) 78–83 [CrossRef] [Google Scholar]
  4. S.C.V. Lim, K.V. Yang, Y. Yang, Y. Cheng, A. Huang, X. Wu, C.H.J. Davies, Tracking microstructure, texture and boundary misorientation evolution of hot deformed and post-deformation annealed Ti-6Al-4V alloy, Mater. Sci. Eng. A 651 (2016) 524–534 [CrossRef] [Google Scholar]
  5. L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, P. Bocher, Texture heterogeneities induced by subtransus processing of near α titanium alloys, Acta Mater. 56 (2008) 4298–4308 [CrossRef] [Google Scholar]
  6. N. Gey, P. Bocher, E. Uta, L. Germain, M. Humbert, Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure, Acta Mater. 60 (2012) 2647–2655 [CrossRef] [Google Scholar]
  7. D. He, J.C. Zhu, Z.H. Lai, Y. Liu, X.W. Yang, An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti-6Al-2Zr-1Mo-1V alloy, Mater. Des. 46 (2013) 38–48 [CrossRef] [Google Scholar]
  8. T. Seshacharyulu, S. Medeiros, J. Morgan, J. Malas, W. Frazier, Y. Prasad, Hot deformation mechanisms in ELI Grade Ti-6a1-4V-A compendium of processing maps, Scr. Mater. 41 (1999) 283–288 [CrossRef] [Google Scholar]
  9. H. Margolin, P. Cohen, Evolution of the Equiaxed Morphology of Phases in Ti- 6 Al- 4 V, Titanium'80 1 (1980) 1555–1561 [Google Scholar]
  10. I. Weiss, G. Welsch, F. Froes, D. Eylon, Mechanisms of microstructure refinement in Ti-6 Al-4 V alloy, Titanium Sci. Technol. (1985) 1503–1510 [Google Scholar]
  11. N. Stefansson, S. Semiatin, Mechanisms of globularization of Ti-6Al-4V during static heat treatment, Metal. Mater. Trans. A 34 (2003) 691–698 [CrossRef] [Google Scholar]
  12. N. Stefansson, S. Semiatin, D. Eylon, The kinetics of static globularization of Ti-6Al-4V, Metal. Mater. Trans. A 33 (2002) 3527–3534 [CrossRef] [Google Scholar]
  13. L. Chen, T.E. James Edwards, F. Di Gioacchino, W.J. Clegg, F.P.E. Dunne, M.-S. Pham, Crystal plasticity analysis of deformation anisotropy of lamellar TiAl alloy: 3D microstructure-based modelling and in-situ micro-compression, Int. J. Plasticity 119 (2019) 344–360. [CrossRef] [Google Scholar]
  14. F.P.E. Dunne, R. Kiwanuka, A.J. Wilkinson, Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density, Proc. Roy. Soc. A 468 (2012) 2509–2531 [CrossRef] [Google Scholar]
  15. T.E.J. Edwards, F. Di Gioacchino, W.J. Clegg, An experimental study of the polycrystalline plasticity of lamellar titanium aluminide, Int. J. Plasticity 118 (2019) 291–319 [CrossRef] [Google Scholar]
  16. X.G. Fan, X.Q. Jiang, X. Zeng, Y.G. Shi, P.F. Gao, M. Zhan, Modeling the anisotropy of hot plastic deformation of two-phase titanium alloys with a colony microstructure, Int. J. Plasticity 104 (2018) 173–195 [CrossRef] [Google Scholar]
  17. X.-j. Dong, S.-q. Lu, H.-z. Zheng, Dynamic spheroidization kinetics behavior of Ti-6. 5Al-2Zr-1Mo-1V alloy with lamellar microstructure, Trans. Nonferrous Metals Soc. China 26 (2016) 1301–1309 [CrossRef] [Google Scholar]
  18. X.G. Fan, H. Yang, S.L. Yan, P.F. Gao, J.H. Zhou, Mechanism and kinetics of static globularization in TA15 titanium alloy with transformed structure, J. Alloys Comp. 533 (2012) 1–8 [CrossRef] [Google Scholar]
  19. K.-x. Wang, W.-d. Zeng, Y.-q. Zhao, Y.-t. Shao, Y.-g. Zhou, Prediction of dynamic globularization of Ti-17 titanium alloy with initial lamellar microstructure during hot compression, Mater. Sci. Eng. A 527 (2010) 6193–6199 [CrossRef] [Google Scholar]
  20. A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, X.P. Cui, Hot working of Ti-6Al-3Mo-2Zr-0. 3Si alloy with lamellar α+β starting structure using processing map, Mater. Des. 30 (2009) 1625–1631 [CrossRef] [Google Scholar]
  21. S.-q. Lu, X. Li, K.-l. Wang, X.-j. Dong, M.W. Fu, High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure, Trans. Nonferrous Metals Soc. China 23 (2013) 353–360 [CrossRef] [Google Scholar]
  22. Q. Bai, J. Lin, T.A. Dean, D.S. Balint, T. Gao, Z. Zhang, Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions, Mater. Sci. Eng. A 559 (2013) 352–358 [CrossRef] [Google Scholar]
  23. P.G. Kubendran Amos, L.T. Mushongera, B. Nestler, Phase-field analysis of volume-diffusion controlled shape-instabilities in metallic systems-I: 2-Dimensional plate-like structures, Comput. Mater. Sci. 144 (2018) 363–373 [CrossRef] [Google Scholar]
  24. P.G. Kubendran Amos, E. Schoof, D. Schneider, B. Nestler, On the globularization of the shapes associated with alpha-precipitate of two phase titanium alloys: Insights from phase-field simulations, Acta Mater. 159 (2018) 51–64 [CrossRef] [Google Scholar]
  25. K. Muszka, L. Madej, B.P. Wynne, Application of the digital material representation to strain localization prediction in the two phase titanium alloys for aerospace applications, Arch. Civil Mech. Eng. 16 (2016) 224–234 [CrossRef] [Google Scholar]
  26. D. Deka, D.S. Joseph, S. Ghosh, M.J. Mills, Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242, Metal. Mater. Trans. A 37 (2006) 1371–1388 [CrossRef] [Google Scholar]
  27. P.F. Gao, H. Yang, X.G. Fan, Quantitative analysis of the microstructure of transitional region under multi-heat isothermal local loading forming of TA15 titanium alloy, Mater. Des. 32 (2011) 2012–2020 [CrossRef] [Google Scholar]
  28. K. Wang, M.Q. Li, Morphology and crystallographic orientation of the secondary α phase in a compressed α/β titanium alloy, Scr. Mater. 68 (2013) 964–967 [CrossRef] [Google Scholar]
  29. H. Matsumoto, T. Nishihara, Y. Iwagaki, T. Shiraishi, Y. Ono, A. Chiba, Microstructural evolution and deformation mode under high-temperature-tensile-deformation of the Ti-6Al-4V alloy with the metastable α′ martensite starting microstructure, Mater. Sci. Eng. A 661 (2016) 68–78 [CrossRef] [Google Scholar]
  30. Z. Zhang, D. Lunt, H. Abdolvand, A.J. Wilkinson, M. Preuss, F.P.E. Dunne, Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension, Int. J. Plasticity 108 (2018) 88–106 [CrossRef] [Google Scholar]
  31. K. Wang, W. Zeng, Y. Zhao, Y. Lai, Y. Zhou, Dynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructure, Mater. Sci. Eng. A 527 (2010) 2559–2566 [CrossRef] [Google Scholar]
  32. J. Fang, K.-l. Wang, S.-q. Lu, X.-f. Lu, Progress on globularization mechanisms and models in titanium alloys with lamellar structure, Mater. Res. Appl. 1 (2010) [Google Scholar]
  33. C.H. Park, J.W. Won, J.-W. Park, S.L. Semiatin, C.S. Lee, Mechanisms and kinetics of static spheroidization of hot-worked Ti-6Al-2Sn-4Zr-2Mo-0. 1Si with a lamellar microstructure, Metal. Mater. Trans. A 43 (2011) 977–985 [CrossRef] [Google Scholar]
  34. F. Pilehva, A. Zarei-Hanzaki, S. Moemeni, A.R. Khalesian, High-temperature deformation behavior of a Ti-6Al-7Nb alloy in dual-phase (α + β) and single-phase (β) regions, J. Mater. Eng. Perform. 25 (2015) 46–58 [CrossRef] [Google Scholar]
  35. L.R. Wang, Y.Q. Zhao, L. Zhou, Effect of hot rolling on the structure of TC21 alloy with acicular alpha, Mater. Manufactur. Processes 27 (2012) 154–159 [CrossRef] [Google Scholar]
  36. K. Wang, W. Zeng, Y. Zhao, Y. Lai, X. Zhang, Y. Zhou, Flow behaviour and microstructural evolution of Ti-17 alloy with lamellar microstructure during hot deformation in α+ β phase field, Mater. Sci. Technol. 27 (2011) 21–28 [CrossRef] [Google Scholar]
  37. X. Fan, H. Yang, P. Gao, Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy, Mater. Des. 51 (2013) 34–42 [CrossRef] [Google Scholar]
  38. P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review, J. Mater. Sci. Technol. 39 (2020) 56–73 [CrossRef] [Google Scholar]
  39. B. Babu, L.-E. Lindgren, Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V, Int. J. Plasticity 50 (2013) 94–108 [CrossRef] [Google Scholar]
  40. S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing, Acta Mater. 59 (2011) 4138–4150 [CrossRef] [Google Scholar]
  41. S. Roy, S. Suwas, The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti-6Al-4V-0.1B, J. Alloys Comp. 548 (2013) 110–125 [CrossRef] [Google Scholar]
  42. C. Wu, H. Yang, H. Li, X. Fan, Static coarsening of titanium alloys in single field by cellular automaton model considering solute drag and anisotropic mobility of grain boundaries, Chin. Sci. Bull. 57 (2012) 1473–1482 [CrossRef] [Google Scholar]
  43. M.G. Glavicic, V. Venkatesh, Integrated computational materials engineering of titanium: current capabilities being developed under the metals affordability initiative, Jom 66 (2014) 1310–1320 [CrossRef] [Google Scholar]
  44. W. Chuan, Y. He, L.H. Wei, Modeling of discontinuous dynamic recrystallization of a near-α titanium alloy IMI834 during isothermal hot compression by combining a cellular automaton model with a crystal plasticity finite element method, Comput. Mater. Sci. 79 (2013) 944–959 [CrossRef] [Google Scholar]
  45. H. Li, X. Sun, H. Yang, A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys, Int. J. Plasticity 87 (2016) 154–180 [CrossRef] [Google Scholar]
  46. H. Li, C. Wu, H. Yang, Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing, Int. J. Plasticity 51 (2013) 271–291 [CrossRef] [Google Scholar]
  47. E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, K. Inal, Coupled crystal plasticity − Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys, Int. J. Plasticity 66 (2015) 85–102 [CrossRef] [Google Scholar]
  48. M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. 21 (1970) 399–424 [CrossRef] [Google Scholar]
  49. P. Cermelli, M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids 49 (2001) 1539–1568 [CrossRef] [Google Scholar]
  50. A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Mater. 54 (2006) 2169–2179 [CrossRef] [Google Scholar]
  51. T. Takaki, Y. Tomita, Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity, Int. J. Mech. Sci. 52 (2010) 320–328 [CrossRef] [Google Scholar]
  52. H. Zhang, X. Dong, Physically based crystal plasticity FEM including geometrically necessary dislocations: numerical implementation and applications in micro-forming, Comput. Mater. Sci. 110 (2015) 308–320 [CrossRef] [Google Scholar]
  53. H.-m. Zhang, X.-h. Dong, Q. Wang, H.-z. Li, Micro-bending of metallic crystalline foils by non-local dislocation density based crystal plasticity finite element model, Trans. Nonferrous Metals Soc. China 23 (2013) 3362–3371 [CrossRef] [Google Scholar]
  54. L. Germain, N. Gey, M. Humbert, Reliability of reconstructed β-orientation maps in titanium alloys, Ultramicroscopy 107 (2007) 1129–1135 [CrossRef] [Google Scholar]
  55. M. Glavicic, P. Kobryn, T. Bieler, S. Semiatin, An automated method to determine the orientation of the high-temperature beta phase from measured EBSD data for the low-temperature alpha-phase in Ti-6Al-4V, Mater. Sci. Eng. A 351 (2003) 258–264 [CrossRef] [Google Scholar]
  56. M. Humbert, F. Wagner, C. Esling, Numbering the crystallographic variants in phase transformation, J. Appl. Crystall. 25 (1992) 724–730 [CrossRef] [Google Scholar]
  57. M. Humbert, F. Wagner, H. Moustahfid, C. Esling, Determination of the orientation of a parent β grain from the orientations of the inherited α plates in the phase transformation from body-centred cubic to hexagonal close packed, J. Appl. Crystallogr. 28 (1995) 571–576 [CrossRef] [Google Scholar]
  58. D. He, J.C. Zhu, S. Zaefferer, D. Raabe, Y. Liu, Z.L. Lai, X.W. Yang, Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β→α phase transformation in a near α titanium alloy, Mater. Sci. Eng. A 549 (2012) 20–29 [CrossRef] [Google Scholar]
  59. Y.-T. Wang, Y. Adachi, K. Nakajima, Y. Sugimoto, Quantitative three-dimensional characterization of pearlite spheroidization, Acta Mater. 58 (2010) 4849–4858 [CrossRef] [Google Scholar]
  60. N. Vanderesse, E. Maire, M. Darrieulat, F. Montheillet, M. Moreaud, D. Jeulin, Three-dimensional microtomographic study of Widmanstätten microstructures in an alpha/beta titanium alloy, Scr. Mater. 58 (2008) 512–515 [CrossRef] [Google Scholar]
  61. T. Seshacharyulu, S. Medeiros, W. Frazier, Y. Prasad, Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure, Mater. Sci. Eng. A 325 (2002) 112–125 [CrossRef] [Google Scholar]
  62. S. Semiatin, T. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure, Acta Mater. 49 (2001) 3565–3573 [CrossRef] [Google Scholar]
  63. M. Klimova, S. Zherebtsov, G. Salishchev, S.L. Semiatin, Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti-5Al-5Mo-5V-1Cr-1Fe, Mater. Sci. Eng. A 645 (2015) 292–297 [CrossRef] [Google Scholar]
  64. M. Cabibbo, S. Zherebtsov, S. Mironov, G. Salishchev, Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800 °C, J. Mater. Sci. 48 (2012) 1100–1110 [CrossRef] [Google Scholar]
  65. S. Zherebtsov, G. Salishchev, S. Lee Semiatin, Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation, Philos. Mag. Lett. 90 (2010) 903–914 [CrossRef] [Google Scholar]
  66. J. Luo, L. Li, M.-q. Li, Deformation behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with two initial microstructures during hot working, Trans. Nonferrous Metals Soc. China 26 (2016) 414–422 [CrossRef] [Google Scholar]
  67. Y. Htwe, K. Kwak, D. Kishi, Y. Mine, R. Ding, P. Bowen, K. Takashima, Anisotropy of < a > slip behaviour in single-colony lamellar structures of Ti-6Al-4V, Mater. Sci. Eng. A 715 (2018) 315–319 [CrossRef] [Google Scholar]
  68. A.A. Salem, S.L. Semiatin, Anisotropy of the hot plastic deformation of Ti-6Al-4V single-colony samples, Mater. Sci. Eng. A 508 (2009) 114–120 [CrossRef] [Google Scholar]
  69. H.-W. Song, S.-H. Zhang, M. Cheng, Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure, J. Alloys Comp. 480 (2009) 922–927 [CrossRef] [Google Scholar]
  70. H.-w. Song, S.-h. Zhang, M. Cheng, Subtransus deformation mechanisms of TC11 titanium alloy with lamellar structure, Trans. Nonferrous Metals Soc. China 20 (2010) 2168–2173 [CrossRef] [Google Scholar]
  71. B. Xu, X. Wang, J. Zhou, K. Wang, W. Zeng, Research on the microstructure evolution of TC17 titanium alloy during hot deformation, China J Nonferrous Metal 20 (2010) 167–172 [Google Scholar]
  72. C.-b. Wu, H. Yang, X.-g. Fan, Z.-c. Sun, Dynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructure, Trans. Nonferrous Metals Soc. China 21 (2011) 1963–1969 [CrossRef] [Google Scholar]
  73. T.R. Bieler, S. Semiatin, The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V, Int. J. Plasticity 18 (2002) 1165–1189 [CrossRef] [Google Scholar]
  74. F. Sun, J. Li, H. Kou, B. Tang, J. Cai, Effect of α′ martensite on microstructure refinement after α + β isothermal treatment in a near-α titanium alloy Ti60, J. Mater. Eng. Performance 24 (2015) 1945–1952 [CrossRef] [Google Scholar]
  75. M. Mazurski, G. Salishchev, Effect of interface energy anisotropy on thermal stability and transformation of lamellar Structures: II. Transformation of lamellae, Phys. Stat. Solidi (b) 188 (1995) 653–658 [CrossRef] [Google Scholar]
  76. H. Dong, J.-c. Zhu, Z.-h. Lai, L. Yong, X.-w. Yang, Z.-s. Nong, Residual elastic stress-strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy, Trans. Nonferrous Metals Soc. China 23 (2013) 7–13 [CrossRef] [Google Scholar]
  77. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction in materials science (Springer, 2000) [CrossRef] [Google Scholar]
  78. A.J. Wilkinson, G. Meaden, D.J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity, Ultramicroscopy 106 (2006) 307–313 [CrossRef] [Google Scholar]
  79. A.J. Wilkinson, G. Meaden, D.J. Dingley, High resolution mapping of strains and rotations using electron backscatter diffraction, Mater. Sci. Technol. 22 (2006) 1271–1278 [CrossRef] [Google Scholar]
  80. M. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. 21 (1970) 399–424 [CrossRef] [Google Scholar]
  81. U. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171–273 [CrossRef] [Google Scholar]
  82. T. Ohashi, Finite-element analysis of plastic slip and evolution of geometrically necessary dislocations in fcc crystals, Philos. Mag. Lett. 75 (1997) 51–58 [CrossRef] [Google Scholar]
  83. S. Semiatin, J. Brown, T. Brown, D. DeLo, T. Bieler, J. Beynon, Strain-path effects during hot working of Ti-6Al-4V with a colony-alpha microstructure, Metal. Mater. Trans. A 32 (2001) 1556–1559 [CrossRef] [Google Scholar]
  84. A.M. Zhao, H. Yang, X.G. Fan, P.F. Gao, R. Zuo, M. Meng, The flow behavior and microstructure evolution during (α + β) deformation of β wrought TA15 titanium alloy, Mater. Des. 109 (2016) 112–122 [CrossRef] [Google Scholar]
  85. X. Fan, H. Zheng, Y. Zhang, Z. Zhang, P. Gao, M. Zhan, J. Liu, Acceleration of globularization during interrupted compression of a two-phase titanium alloy, Mater. Sci. Eng. A 720 (2018) 214–224 [CrossRef] [Google Scholar]
  86. R. Quey, J.H. Driver, P.R. Dawson, Tracking the in-grain orientation spreads in hot-deformed polycrystalline aluminium: experiment and finite element simulation, Mater. Sci. Forum (2012) 261–264 [Google Scholar]
  87. R. Quey, D. Piot, J.H. Driver, Microtexture tracking in hot-deformed polycrystalline aluminium: comparison with simulations, Acta Mater. 58 (2010) 2271–2281 [CrossRef] [Google Scholar]
  88. R. Quey, J. Driver, Microtexture tracking of sub-boundary evolution during hot deformation of aluminium, Mater. Character. 62 (2011) 1222–1227 [CrossRef] [Google Scholar]
  89. S. Dancette, A. Browet, G. Martin, M. Willemet, L. Delannay, Automatic processing of an orientation map into a finite element mesh that conforms to grain boundaries, Model. Simul. Mater. Sci. Eng. 24 (2016) 055014 [CrossRef] [Google Scholar]
  90. G. Martin, D. Caldemaison, M. Bornert, C. Pinna, Y. Bréchet, M. Véron, J. Mithieux, T. Pardoen, Characterization of the high temperature strain partitioning in duplex steels, Exp. Mech. 53 (2013) 205–215 [CrossRef] [Google Scholar]
  91. C. Pinna, Y. Lan, M.F. Kiu, P. Efthymiadis, M. Lopez-Pedrosa, D. Farrugia, Assessment of crystal plasticity finite element simulations of the hot deformation of metals from local strain and orientation measurements, Int. J. Plasticity 73 (2015) 24–38 [CrossRef] [Google Scholar]
  92. H. Sharma, S.M. Van Bohemen, R.H. Petrov, J. Sietsma, Three-dimensional analysis of microstructures in titanium, Acta Mater. 58 (2010) 2399–2407 [CrossRef] [Google Scholar]
  93. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.-Y. Buffière, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nucl. Instrum. Methods Phys. Res. Sect. B 200 (2003) 273–286 [CrossRef] [Google Scholar]
  94. H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R. Suter, U. Lienert, L. Margulies, T. Lorentzen, D. Juul Jensen, Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders, J. Appl. Crystallogr. 34 (2001) 751–756. [CrossRef] [Google Scholar]
  95. S. Zaefferer, S. Wright, D. Raabe, 3D-orientation microscopy in a FIB SEM: a new dimension of microstructure characterization, Microsc. Microanal. 13 (2007) 1508–1509 [Google Scholar]
  96. J. Konrad, S. Zaefferer, D. Raabe, Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique, Acta Mater. 54 (2006) 1369–1380 [CrossRef] [Google Scholar]
  97. W. Kaixuan, Z. Weidong, Z. Yongqing, Z. Yigang, Modelling the quantitative correlation between the microstructure and mechanical properties in titanium alloys, Rare Metal Mater. Eng. 40 (2011) 784–787 [Google Scholar]
  98. Z. Ji, H. Yang, H. Li, Predicting the effects of microstructural features on strain localization of a two-phase titanium alloy, Mater. Des. 87 (2015) 171–180 [CrossRef] [Google Scholar]
  99. G. Rogl, S. Ghosh, L. Wang, J. Bursik, A. Grytsiv, M. Kerber, E. Bauer, R.C. Mallik, X.-Q. Chen, M. Zehetbauer, Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater. 183 (2020) 285–300 [CrossRef] [Google Scholar]
  100. P. Mansoor, S. Dasharath, Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD)-A review, Materials Today: Proceedings (2019) [Google Scholar]
  101. K. Bartha, A. Veverková, J. Stráský, J. Veselý, P. Minárik, C. Correa, V. Polyakova, I. Semenova, M. Janeček, Effect of the severe plastic deformation by ECAP on microstructure and phase transformations in Ti-15Mo alloy, Mater. Today Commun. (2019) 100811 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.