Open Access
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 17
Number of page(s) 14
DOI https://doi.org/10.1051/mfreview/2020014
Published online 09 June 2020
  1. A. Inegbenebor, C. Bolu, P. Babalola, A. Inegbenebor, O. Fayomi, Aluminium silicon carbide particulate metal matrix composite development via stir casting processing, Silicon 10 (2018) 343–347 [CrossRef] [Google Scholar]
  2. M. Abdulwahab, O. Umaru, M. Bawa, H. Jibo, Microstructural and thermal study of Al-Si-Mg alloy/melon shell ash particulate composite, Results Phys. 7 (2017) 974–954 [Google Scholar]
  3. K.K. Alaneme, A.O. Aluko, Fracture toughness (KIC) and tensile properties of as-cast and age-hardened aluminium (6063)-silicon carbide particulate composites, Sci. Iran. Trans. A 9 (2012) 992–996. [Google Scholar]
  4. D. Isaac, K. Kumaravel, M. Nadarajan, Influence of rice husk ask particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing, Compos Commun. 3 (2017) 42–46 [CrossRef] [Google Scholar]
  5. M.O. Bodunrin, K.K. Alaneme, L.H. Chown, Aluminum matrix hybrid composite. A review of reinforcement philosophies; mechanical, corrosion ant tribological characteristics, J. Mater. Res. Technol. 4 (2015) 434–445. [CrossRef] [Google Scholar]
  6. K.K. Alaneme, I.B. Akintunde, P.A. Olubambi, T.M. Adewale, Mechanical behaviour of rice husk ash − alumina hybrid reinforced aluminium based matrix composites, J. Mater. Res. Technol. 2 (2013) 60–67 [CrossRef] [Google Scholar]
  7. A. Devaraju Kumar, A. Kotiveerachari, Influence of addition of Grp/Al203 with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing, Trans. Nonferrous Met. Soc. China 23 (2013) 1275–1280. [CrossRef] [Google Scholar]
  8. X. Chen Fu, D. Teng, J.H. Zhang, Hot deformation behavior and mechanism of hybrid aluminum-matrix composites reinforced with micro-SiC and nano-TiB2, J. Alloys Compd. 753 (2018) 566–575. [CrossRef] [Google Scholar]
  9. L. Saravanan, T. Senthilvelan, Investigations on the hot workability characteristics and deformation mechanisms of aluminium alloy-Al2O3 nanocomposite, Mater. Des. 79 (2015) 6–14 [CrossRef] [Google Scholar]
  10. K. Wang, X. Li, G. Shu, G. Tang, Hot deformation behavior and microstructural evolution of particulate reinforced AA6061/B4C composite during compression at elevated temperature, Mater Sci. & Eng. A. 696 (2017) 248–256 [CrossRef] [Google Scholar]
  11. S. Chen, J. Teng, H. Luo, Y. Wang, H. Zhang, Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites, Mater. Sci. Eng. A. 697 (2017) 194–202 [CrossRef] [Google Scholar]
  12. R. Tao, Y. Zhao, X. Kai, Z. Zhao, R. Ding, L. Liang, W. Xu, Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite, Mater Sci & Eng. A. 732 (2018) 138–147 [CrossRef] [Google Scholar]
  13. Z.Y. Huang, X.X. Zhang, B.L. Xiao, Z.Y. Ma, Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite, J. Alloys & Compd. 722 (2017) 145–157 [CrossRef] [Google Scholar]
  14. K.K. Alaneme, B.O. Ademilua, M.O. Bodunrin, Mechanical and corrosion Behaviour of Bamboo Leaf Ash-Silicon Carbide Hybrid Composites, Trib. in Ind. 35 (2013) 25–35. [Google Scholar]
  15. C. Shuang, T. Jie, L. Haibo, W. Yu, Z. Hui, Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites. Mater. Sci. & Eng. A. 697 (2017) 194–202 [Google Scholar]
  16. S. Hao, et al. Hot deformation behaviors of 35%SiCp/2024Al metal matrix composites. Trans. Nonferrous Met. Soc. China. 24 (2014) 2468–2474 [CrossRef] [Google Scholar]
  17. Y. Yang, Z. Zhang, X. Zhang, Processing map of Al2O3 particulate reinforced Al alloy matrix composites. Mater. Sci. Eng. A. 558 (2012) 112–118 [CrossRef] [Google Scholar]
  18. Y. Dong, C. Zhang, G. Zhao, Y. Guan, A. Gao, W. Sun, Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: determination and application in simulating extrusion process of complex profiles, Mater. Des. 92 (2016) 983–997 [CrossRef] [Google Scholar]
  19. T. Mitchell, E. Hirth, A. Misra, Apparent activation energy and stress exponent in materials with a high Peierls stress. Acta Mater. 50 (2002) 1087–1093 [CrossRef] [Google Scholar]
  20. Y. Chen, A.H. Clausen, O.S. Hopperstad, M. Langseth, Stress-Strain Behaviour Of Aluminium Alloys at A Wide Range of Strain Rates, Int. J. Solids Struct. 2009, 46, Pp. 3825–3835 [CrossRef] [Google Scholar]
  21. F. Kabirian, A. Khan, A. Pandey, Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling. Int. J. Plast. 55 (2014) 232–246 [CrossRef] [Google Scholar]
  22. H. Yamada, T. Kami, R. Mori, T. Kudo, M. Okada, Strain Rate Dependence of Material Strength in AA5xxx Series Aluminum Alloys and Evaluation of Their Constitutive Equation. Metals. 8 (2018) 1–15 [Google Scholar]
  23. Y. Zong, Y.D.B. Shan, M. Xu, Y. Lv, Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J. Mater. Process. Technol. 209 (2009) 1988–1994 [CrossRef] [Google Scholar]
  24. W.D. Nix, High Temperature Deformation Processes and Strengthening Mechanisms in Intermetallic Particulate Composites (Defense Technical Information Center, 1991). doi:10.21236/ADA232737 [CrossRef] [Google Scholar]
  25. J. Yan, Q. Pan, A. Li, W. Song, Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models. Trans. Nonferrous Met. Soc. China 27 (2017) 638–647 [CrossRef] [Google Scholar]
  26. H. Chen, C. Cao, Characterization of hot deformation microstructures of alpha-beta titanium alloy with equiaxed structure. Trans. Nonferrous Met. Soc. China. 22 (2012) 503–509 [CrossRef] [Google Scholar]
  27. Y. Lin, C.X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32 (2011) 1733–1759 [CrossRef] [Google Scholar]
  28. K.K. Alaneme, E.A. Okotete, V.A. Fajemisin, M.A. Bodunrin, Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review, Arab. J. Basic Appl. Sci. 26 (2019) 311–330 [CrossRef] [Google Scholar]
  29. H. Wu, H. Zhang, S. Chen, D. Fu, Flow stress behavior and processing map of extruded 7075Al/SiC particle reinforced composite prepared by spray deposition during hot compression. Trans. Nonferrous Met. Soc. China. 25 (2015) 692–698 [CrossRef] [Google Scholar]
  30. X.G. Fan, Y. Zhang, P.F. Gao, Z.N. Lei, M. Zhan, Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field. Mater. Sci. Eng. A. 694 (2017) 24–32 [CrossRef] [Google Scholar]
  31. M.O. Bodunrin, L.H. Chown, J.W. Van der merwe, K.K. Alaneme, Hot working of Ti-6Al-4V with a complex initial microstructure. Int. J. Mater. Form. 2018, doi:10.1007/s12289-018-1457-9. [Google Scholar]
  32. C.M. Sellars, W.J. Tegart, On the mechanism of hot deformation. Acta Metall. 14 (1966) 1136–1138 [CrossRef] [Google Scholar]
  33. M.J. Luton, C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall. 17 (1969) 1033–1043 [CrossRef] [Google Scholar]
  34. R.D. Doherty, et al. Current issues in recrystallization: a review. Mater. Sci. Eng. A. 238 (1997) 219–274 [CrossRef] [Google Scholar]
  35. W. Peng, W. Zeng, Q. Wang, H. Yu, Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater. Des. 51 (2013) 95–104 [CrossRef] [Google Scholar]
  36. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333. Mater. Des. 49 (2013) 945–952 [CrossRef] [Google Scholar]
  37. M. Härtel, C. Illgen, P. Frint, M. Wagner, On the PLC Effect in a Particle Reinforced AA2017 Alloy, Metals 8 (2018) 88 [CrossRef] [Google Scholar]
  38. I. Philippart, H.J. Rack, High temperature dynamic yielding in metastable Ti–6.8 Mo–4.5 F–1.5 Al. Mater. Sci. Eng. A. 243 (1988) 196–200 [CrossRef] [Google Scholar]
  39. G.E. Dieter, H.A. Kuhn, S.L. Semiatin, Handbook of workability and process design, ASM International, 2003 [Google Scholar]
  40. S.D. Mesarovic, Dynamic strain aging and plastic instabilities. J. Mech. Phys. Solids. 43 (1995) 671–700 [CrossRef] [Google Scholar]
  41. H. Shi, A. Mclaren, A. Sellars, C.M.R. Shahani, Bolingbroke R. Constitutive equations for high temperature flow stress of aluminium alloys. Mater. Sci. Technol. 13 (1997) 210–216 [CrossRef] [Google Scholar]
  42. D. Ponge, M. Bredehöft, G. Gottstein, Dynamic recrystallization in high purity aluminum, Scr. Mater. 37 (1997) 1769–1775 [CrossRef] [Google Scholar]
  43. C. Shi, W. Mao, X.G. Chen, Evolution of activation energy during hot deformation of AA7150 aluminum alloy, Mater. Sci. Eng. A. 571 (2013) 83–91 [CrossRef] [Google Scholar]
  44. J. Zhang, B. Chen, Z. Baoxiang, Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy, Mater. Des. 34 (2012) 15–21 [CrossRef] [Google Scholar]
  45. Q. Yang, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation. Mater. Sci. Eng. A. 662 (2016) 204–213 [CrossRef] [Google Scholar]
  46. D. Li, et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation. Trans. Nonferrous Met. Soc. China. 26 (2016) 1491–1497 [CrossRef] [Google Scholar]
  47. H.J. Mcqueen, D.L. Bourell, Hot Workability of Metals and Alloys. JOM. 39 (1987) 28–35 [CrossRef] [Google Scholar]
  48. H. Li, H. Wang, M. Zeng, X. Liang, H. Liu, Forming behavior and workability of 6061/B4CP composite during hot deformation, Compos. Sci. Technol. 71 (2011) 925–930 [CrossRef] [Google Scholar]
  49. H. Ahamed, V. Senthilkumar, Hot deformation behavior of mechanically alloyed Al6063/0.75Al2O3/0.75Y2O3 nano-composite—A study using constitutive modeling and processing map. Mater. Sci. Eng. A. 539 (2012) 349–359 [CrossRef] [Google Scholar]
  50. J. Cai, K. Wang, P. Zhai, F. Li, J. Yang, A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform. 24 (2014) 32–44 [CrossRef] [Google Scholar]
  51. J. Cai, K. Wang, P. Zhai, F. Li, J. Yang, A modified Johnson-cook Constitutive Equation to predict Hot Deformation Behaviour of Ti- 6Al- 4V Alloy, J. Mater. Eng. Perform. 24 (2017) 32–44 [Google Scholar]
  52. L. Briottet, J.J. Jonas, F. Montheillet, A mechanical interpretation of the activation energy of high temperature deformation in two phase materials, Acta Mater. 44 (1966) 1665–1672 [CrossRef] [Google Scholar]
  53. R.K.C. Nkhoma, C.W. Siyasiya, F.W.E. Stump, Hot workability of AISI 321 and AISI 304 austenitic stainless steels. J. Alloys Compd. 595 (2014) 103–112 [CrossRef] [Google Scholar]
  54. Y. Deng, C. Zhang, G. Zhao, Y. Guan, A. Gao, W. Sun, Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: Determination and application in simulating extrusion process of complex profiles. Mater. Des. 92 (2016) 983–997 [CrossRef] [Google Scholar]
  55. E. Evangelista, H.J. Mcqueen, N.D. Ryan, Hot strength, dynamic recovery and dynamic recrystallization of 317 type stainless steel Metallurgical Science and Technology. Metall. Sci. Technol. 5 (1987) 50–58 [Google Scholar]
  56. H.J. Mcqueen, Development of dynamic recrystallization theory. Mater. Sci. Eng. A. 387–389 (2004) 203–208. [CrossRef] [Google Scholar]
  57. S.B. Davenport, N.J. Silk, C.N. Sparks, C.M. Sellars, Development of constitutive equations for modelling of hot rolling. Mater. Sci. Technol. 16 (2000) 539–546 [CrossRef] [Google Scholar]
  58. Z. Zeng, S. Jonsson, Y. Zhang, Constitutive equations for pure titanium at elevated temperatures. Mater. Sci. Eng. A. 505 (2009) 116–119 [CrossRef] [Google Scholar]
  59. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater. Sci. Eng. A. 500 (2009) 114–121 [CrossRef] [Google Scholar]
  60. G. Ge, et al. Constitutive modeling of high temperature flow behavior in a Ti-45Al-8Nb-2Cr-2Mn-0.2Y alloy. Sci. Rep. 8 (2018) 5453 [CrossRef] [Google Scholar]
  61. W.A. Bryant, Correlation of data on the hot deformation of Ti-6Al-4V. J. Mater. Sci. 10 (1975) 1793–1797 [CrossRef] [Google Scholar]
  62. A. Momeni, S.M. Abbasi, Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two-phase regions, Mater. Des. 31 (2010) 3599–3604 [CrossRef] [Google Scholar]
  63. H.J. Mcqueen, N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A 322, 43–63 [Google Scholar]
  64. H.J. McQueen, W.A. Wong, J.J. Jonas, Deformation of Aluminium at High Temperatures and Strain Rates, Can. J. Phys. 45 (1967) 1225–1234 [CrossRef] [Google Scholar]
  65. H.J. Mcqueen, S. Yue, N.D. Ryan, E. Fry, Hot working characteristics of steels in austenitic state, J. Mater. Process. Technol. 53 (1995) 293–310 [CrossRef] [Google Scholar]
  66. W. Xu, X. Jin, W. Xiong, X. Zeng, Shan, Study on hot deformation behavior and workability of squeeze-cast 20 vol%SiCw/6061Al composites using processing map, Mater. Charact. 135 (2018) 154–166 [CrossRef] [Google Scholar]
  67. D.J. Prozexky, M.O. Bodunrin, L.H. Chown, Hot deformation behaviour of α+β Ti-Al-V-Fe experimental alloys, AIP Conf. Proc. 1896 (2017) 160019 [CrossRef] [Google Scholar]
  68. T. Ran, Z. Yutao, K. Xizhou, Z. Zhihao, D. Renfa, L. Liang, X. Weitai, Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111composite. Mater. Sci. & Eng. A. 732 (2018) 138–147 [Google Scholar]
  69. X. Wenchen, J. Xueze, X. Wendeng, Z. Xiangqian, S. Debin, Study on hot deformation behavior and workability of squeeze-cast 20 vol% SiCw/6061Al composites using processing map, Mater. Charac. 135 (2018) 154–166 [Google Scholar]
  70. W. Kaikai, L. Xiaopei, L. Qiulin, S. Guogang, T. Guoyi, Hot deformation behavior and microstructural evolution of particulate reinforced AA6061/B4C composite during compression at elevated temperature, Mater. Sci. & Eng. A. 696 (2017) 248–256 [CrossRef] [Google Scholar]
  71. C. Shuang, T. Jie, L. Haibo, W. Yu, Z. Hui, Hot deformation characteristics and mechanism of PM 8009Al/Al203 particle reinforced composites, Mater. Sci. & Eng. A. 697 (2017) 194–202 [Google Scholar]
  72. F. Mokdad, D.L. Chen, Z.Y. Liu, D.R. Ni, B.L. Xiao, Z.Y. Ma, Hot deformation and activation energy of a CNT-reinforced aluminum matrix nanocomposite, Mater. Sci. & Eng. A. 695 (2017) 322–331 [CrossRef] [Google Scholar]
  73. L. Yu, X. Wen, Z. Jun, C. Hongsheng, Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites, Mater. Charac. 124 (2017) 107–116 [CrossRef] [Google Scholar]
  74. L. Xiaopu, L. Chongyu, L. Kun, M. Mingzhen, L. Riping, Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering, J. Mater. Sci. & Tech. 32 (2016) 291–297 [Google Scholar]
  75. Hr. Ezatpour, A. Chaichi, S.A. Sajjadi, The effect of Al2O3-nanoparticles as the reinforcement additive on the hot deformation behavior of 7075 aluminum alloy, Mater. & Des. 88 (2015) 1049–1056 [CrossRef] [Google Scholar]
  76. L. Saravanan, T. Senthilvelan, Investigations on the hot workability characteristics and deformation mechanisms of aluminium alloy-Al2O3 nanocomposite, Mater & Des. 79 (2015) 6–14 [Google Scholar]
  77. L. Baifeng, Q. Risheng, L. Chunhong, Y. Xiaofang, L. Zhiqiang, Z. Di, L. Qing, Hot deformation and processing maps of Al2O3/Al composites fabricated by flake powder metallurgy, Trans. Nonferrous Met. Soc. China. 25 (2015) 1056–1063 [CrossRef] [Google Scholar]
  78. W. Mingliang, C. Zhe, C. Dong, W. Yi, L. Xianfeng, M. Naiheng, W. Haowei, The Constitutive Model and Processing Map for in-situ 5wt% Tib2 Reinforce 7050 Al Alloy Matrix Composite, Trans. Tech. Pub. 575–576 (2014) 11–19 [Google Scholar]
  79. L. Huizhong, W. Haijun, Z. Min, L. Xiaopeng, L. Hongting, forming behavior and workability of 6061/B4CP composite during hot deformation, Comp. Sci. & Tech. 71 (2011) 925–930 [Google Scholar]
  80. J.C. Shao, B.L. Xiao, Q.Y. Wang, Z.Y. Ma, Y. Liu, K. Yang, Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.% SiCp/2024Al composite, Mater. Sci. & Eng. A 527 (2010) 7865–7872 [CrossRef] [Google Scholar]
  81. S. Spigarelli, E. Cerri, P. Cavaliere, E. Evangelista, An analysis of hot formability of the 6061+20% Al2O3 composite by means of different stability criteria, Mater. Sci. & Eng. A. 327 (2002) 144–154 [CrossRef] [Google Scholar]
  82. H.J. Mcqueen, M.J. Lee, Light metals 2000 In: J. Kazadi et al. (Eds.). Met. Soc. CIM, Montreal 2000, 529–538 [Google Scholar]
  83. T. Sheppard, Extrusion of Aluminum Alloys. Kluwer Academic Publishers, 1999 [CrossRef] [Google Scholar]
  84. X. Velay, Prediction and control of subgrain size in the hot extrusion of aluminium alloys with feeder plates. J. Mater. Process. Tech. 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.