Open Access
Review
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 34
Number of page(s) 24
DOI https://doi.org/10.1051/mfreview/2020029
Published online 25 September 2020
  1. C. Leyens, M. Peters, Titanium and titanium alloys: fundamentals and application, Wiley-VCH, Germany, 2003 [CrossRef] [Google Scholar]
  2. M.O. Bodunrin, J.A. Omotoyinbo, Development of low-cost titanium alloys: a chronicle of challenges and opportunities. Mater. Today Proc. (2020) https://doi.org/10.1016/j.matpr.2020.02.978 [Google Scholar]
  3. S.A. Niknam, R. Khettabi, V. Songmene, Machinability and machining of titanium alloys: a review. In: J.P. Davim, editor. Mach. Titan. Alloys, Springer, Berlin, Heidelberg 2014, pp. 1–30 [Google Scholar]
  4. C. Veiga, J.P. Davim, A.J.R. Loureiro, Review on machinability of titanium alloys: the process perspective, Rev. Adv. Mater. Sci. 34 (2013) 148–164 [Google Scholar]
  5. X. Liang, Z. Liu, B. Wang, State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review, Measurement 132 (2019) 150–181 [CrossRef] [Google Scholar]
  6. E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability—a review, J. Mater. Process Technol. 68 (1997) 262–274 [CrossRef] [Google Scholar]
  7. S.H. You, J.H. Lee, S.H. Oh, A study on cutting characteristics in turning operations of titanium alloy used in automobile, Int. J. Precis. Eng. Manuf. 20 (2019) 209–216 [CrossRef] [Google Scholar]
  8. R.S. Revuru, N.R. Posinasetti, V.R. Vsn, Application of cutting fluids in machining of titanium alloys—a review, Int. J. Adv. Manuf. Technol. 91 (2017) 2477–2498 [CrossRef] [Google Scholar]
  9. Z. Ren, S. Qu, Y. Zhang, F. Sun, X. Li, C. Yang, Machining performance of PCD and PCBN tools in dry turning titanium alloy Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B, Int. J. Adv. Manuf. Technol. 102 (2019) 2649–2661 [CrossRef] [Google Scholar]
  10. R.S. Revuru, J.Z. Zhang, N.R. Posinasetti, T. Kidd, Optimization of titanium alloys turning operation in varied cutting fluid conditions with multiple machining performance characteristics, Int. J. Adv. Manuf. Technol. 95 (2018) 1451–1463 [CrossRef] [Google Scholar]
  11. N.S. Weston, M. Jackson, FAST-forge − a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components, J. Mater. Process. Technol. 243 (2017) 335–346 [CrossRef] [Google Scholar]
  12. SAmaterials. Why Titanium is So Expensive. Stanf Adv Mater 2014. https://samaterials.wordpress.com/2014/07/29/why-titanium-is-so-expensive/ (accessed October 22, 2016) [Google Scholar]
  13. N.S. Weston, M. Jackson, FAST-forge of titanium alloy Swarf: a solid-state closed-loop recycling approach for aerospace machining waste, Metals 10 (2020) 296 [CrossRef] [Google Scholar]
  14. L. Bolzoni, E. Herraiz, E.M. Ruiz-Navas, E. Gordo, Study of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel addition, Mater. Des. 60 (2014) 628–636 [CrossRef] [Google Scholar]
  15. L. Bolzoni, E.M. Ruiz-Navas, E. Gordo, Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys, Mater. Des. 110 (2016) 317–323 [CrossRef] [Google Scholar]
  16. P.G. Esteban, L. Bolzoni, E.M. Ruiz-Navas, E. Gordo, PM processing and characterisation of Ti–7Fe low cost titanium alloys, Powder Metall. 54 (2011) 242–252 [CrossRef] [Google Scholar]
  17. J. Pope, M. Jackson, FAST-forge of diffusion bonded dissimilar titanium alloys: a novel hybrid processing approach for next generation near-net shape components, Metals 9 (2019) 654 [CrossRef] [Google Scholar]
  18. J.J. Pope, E.L. Calvert, N.S. Weston, M. Jackson, FAST-DB: a novel solid-state approach for diffusion bonding dissimilar titanium alloy powders for next generation critical components, J. Mater. Process. Technol. 269 (2019) 200–207 [CrossRef] [Google Scholar]
  19. M.K. Gupta, P.K. Sood, V.S. Sharma, Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment, Mater. Manuf. Process 31 (2016) 1671–1682 [CrossRef] [Google Scholar]
  20. S. Vijay, V. Krishnaraj, Machining parameters optimization in end milling of Ti-6Al-4V, Proc. Eng. 64 (2013) 1079–1088 [CrossRef] [Google Scholar]
  21. S. Kumar, A. Batish, R. Singh, T.P. Singh, A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys, J. Mech. Sci. Technol. 28 (2014) 2831–2844 [CrossRef] [Google Scholar]
  22. K. Gupta, R.F. Laubscher, Sustainable machining of titanium alloys: a critical review, Proc. Inst. Mech. Eng. Part B 231 (2017) 2543–2560 [CrossRef] [Google Scholar]
  23. M. Rahman, Z.-G. Wang, Y.-S. Wong, A Review on high-speed machining of titanium alloys, JSME Int. J. Ser. C 49 (2006) 11–20 [CrossRef] [Google Scholar]
  24. V. Gupta, B. Singh, R.K. Mishra, Machining of titanium and titanium alloys by electric discharge machining process: a review, Int. J. Mach. Mach. Mater. 22 (2020) 99 [Google Scholar]
  25. J.E. Abu Qudeiri, A.-H.I. Mourad, A. Ziout, M.H. Abidi, A. Elkaseer, Electric discharge machining of titanium and its alloys: review, Int. J. Adv. Manuf. Technol. 96 (2018) 1319–1339 [CrossRef] [Google Scholar]
  26. Y. Natarajan, P.K. Murugesan, M. Mohan, S.A. Liyakath, A. Khan, Abrasive water jet machining process: a state of art of review, J. Manuf. Process. 49 (2020) 271–322 [CrossRef] [Google Scholar]
  27. A.K. Singh, D.P.S. Rao, A review on ultrasonic machining of titanium alloys, International Journal of Research and Scientific Innovation (IJRSI) 7 (2018) 81–87 [Google Scholar]
  28. N. Singh, P.S. Bharti, A review on micro electric discharge machining of titanium alloys, Mater. Today Proc. (2019), https://doi.org/10.1016/j.matpr.2019.08.235 [Google Scholar]
  29. R. Singh, J.S. Khamba, Ultrasonic machining of titanium and its alloys: a review, J. Mater. Process. Technol. 173 (2006) 125–135 [CrossRef] [Google Scholar]
  30. R.R. Boyer, Titanium for aerospace: Rationale and applications, Adv. Perform. Mater. 2 (1995) 349–368 [CrossRef] [Google Scholar]
  31. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213 (1996) 103–114 [CrossRef] [Google Scholar]
  32. O. Hatt, Z. Lomas, M. Thomas, M. Jackson, The effect of titanium alloy chemistry on machining induced tool crater wear characteristics, Wear 408–409 (2018) 200–207 [CrossRef] [Google Scholar]
  33. O. Hatt, P. Crawforth, M. Jackson, On the mechanism of tool crater wear during titanium alloy machining. Wear 374–375 (2017) 15–20 [CrossRef] [Google Scholar]
  34. M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Sci. Technol. Adv. Mater. 4 (2003) 445–54 [CrossRef] [Google Scholar]
  35. H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C 26 (2006) 1269–1277 [CrossRef] [Google Scholar]
  36. L.-C. Zhang, L.-Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater. 21 (2019) 1801215 [CrossRef] [Google Scholar]
  37. Yu.B. Egorova, S.V. Skvortsova, R.A. Davydenko, N.G. Mitropol'skaya, Methods for improving the effectiveness of machining of titanium and its alloys, Inorg. Mater. Appl. Res, 4 (2013) 46–51 [CrossRef] [Google Scholar]
  38. J.D. Kechagias, K.-E. Aslani, N.A. Fountas, N.M. Vaxevanidis, D.E. Manolakos, A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy, Measurement 151 (2020) 107213 [CrossRef] [Google Scholar]
  39. V.F. Pegashkin, V.I. Golubev, V.V. Medison, Use of electrical insulation of the cutting tool to increase tool life when machining titanium alloys, Int. J. Adv. Manuf. Technol. 74 (2014) 599–614 [CrossRef] [Google Scholar]
  40. N. Varote, S.S. Joshi, Microstructural Analysis of Machined Surface Integrity in Drilling a Titanium Alloy, J. Mater. Eng. Perform. 26 (2017) 4391–4401 [CrossRef] [Google Scholar]
  41. F. Hojati, A. Daneshi, B. Soltani, B. Azarhoushang, D. Biermann, Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process, Precis. Eng. 62 (2020) 1–9 [CrossRef] [Google Scholar]
  42. J. Kumar, J.S. Khamba, Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis, Int. J. Adv. Manuf. Technol. 48 (2010) 103–119 [CrossRef] [Google Scholar]
  43. W.S. Yip, S. To, Sustainable Ultra-Precision Machining of Titanium Alloy Using Intermittent Cutting, Int. J. Precis. Eng. Manuf. −Green. Technol. 7 (2020) 361–373 [CrossRef] [Google Scholar]
  44. J. Sun, Y.B. Guo, Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V, Int. J. Adv. Manuf. Technol. 41 (2009) 651–659 [CrossRef] [Google Scholar]
  45. A. Pramanik, Problems and solutions in machining of titanium alloys, Int. J. Adv. Manuf. Technol. 70 (2014) 919–928 [CrossRef] [Google Scholar]
  46. S. Yang, G. Zhu, J. Xu, Y. Fu, Tool wear prediction of machining hydrogenated titanium alloy Ti6Al4V with uncoated carbide tools, Int. J. Adv. Manuf. Technol. 68 (2013) 673–682 [CrossRef] [Google Scholar]
  47. M. Aramesh, H.M. Attia, H.A. Kishawy, M. Balazinski, Observation of a unique wear morphology of cBN inserts during machining of titanium metal matrix composites (Ti-MMCs); leading to new insights into their machinability, Int. J. Adv. Manuf. Technol. 92 (2017) 519–530 [CrossRef] [Google Scholar]
  48. U. Heisel, M. Lutz, D. Spath, R. Wassmer, U. Walter, Application of Minimum Quantity Cooling Lubrication Technology in Cutting Processes 6 (1994) [Google Scholar]
  49. K.-H. Park, M.A. Suhaimi, G.-D. Yang, D.-Y. Lee, S.-W. Lee, P. Kwon, Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL), Int. J. Precis. Eng. Manuf. 18 (2017) 5–14 [CrossRef] [Google Scholar]
  50. S. Pervaiz, S. Anwar, I. Qureshi, N. Ahmed, Recent Advances in the Machining of Titanium Alloys using Minimum Quantity Lubrication (MQL) Based Techniques, Int. J. Precis. Eng. Manuf. −Green. Technol. 6 (2019) 133–145 [CrossRef] [Google Scholar]
  51. Y. Lou, H. Wu, Improving machinability of titanium alloy by electro-pulsing treatment in ultra-precision machining, Int. J. Adv. Manuf. Technol. 93 (2017) 2299–2304 [CrossRef] [Google Scholar]
  52. T. Braham, Bouchnak, G. Germain, A. Morel, J.L. Lebrun, The influence of laser assistance on the machinability of the titanium alloy Ti555-3, Int. J. Adv. Manuf. Technol. 68 (2013) 2471–2481 [CrossRef] [Google Scholar]
  53. U. Kumar, P. Senthil, A comparative machinability study on titanium alloy Ti-6Al-4V during dry turning by cryogenic treated and untreated condition of uncoated WC inserts, Mater. Today Proc. (2019) S2214785319333644 [Google Scholar]
  54. D. Biermann, H. Abrahams, M. Metzger, Experimental investigation of tool wear and chip formation in cryogenic machining of titanium alloys, Adv. Manuf. 3 (2015) 292–299 [CrossRef] [Google Scholar]
  55. Q. An, J. Chen, Z. Tao, W. Ming, M. Chen, Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti 6242S and Ti-555 titanium alloys, Int. J. Refract. Met. Hard. Mater. 86 (2020) 105091 [CrossRef] [Google Scholar]
  56. D. Bai, J. Sun, W. Chen, T. Wang, Wear mechanisms of WC/Co tools when machining high-strength titanium alloy TB6 (Ti-10V-2Fe-3Al), Int. J. Adv. Manuf. Technol. 90 (2017) 2863–2874 [CrossRef] [Google Scholar]
  57. T. Li, T. Shi, Z. Tang, G. Liao, J. Han, J. Duan, Temperature monitoring of the tool-chip interface for PCBN tools using built-in thin-film thermocouples in turning of titanium alloy, J. Mater. Process. Technol. 275 (2020) 116376 [CrossRef] [Google Scholar]
  58. J. Kertesz, R.J. Pryor, D.W. Richerson, R.A. Cutler, Machining Titanium Alloys with Ceramic Tools, JOM 40 (1988) 50–51 [CrossRef] [Google Scholar]
  59. S. Pervaiz, I. Deiab, B. Darras, Power consumption and tool wear assessment when machining titanium alloys, Int. J. Precis. Eng. Manuf. 14 (2013) 925–936 [CrossRef] [Google Scholar]
  60. K.A. Osman, Ü.H.Ö. nver, U. Şeker, Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: a review, Int. J. Adv. Manuf. Technol. 100 (2019) 2311–2332 [CrossRef] [Google Scholar]
  61. R. Evans, 2 − Selection and testing of metalworking fluids. In: V. P. Astakhov, S. Joksch, editors. Metalwork. Fluids MWFs Cut. Grind., Woodhead Publishing; 2012, p. 23–78 [Google Scholar]
  62. M. Namb, D. Paulo, Influence of Coolant in Machinability of Titanium Alloy (Ti-6Al-4V), J. Surf. Eng. Mater. Adv. Technol. 1 (2011) 9–14 [Google Scholar]
  63. T.B. Bouchnak, Etude du comportement en sollicitations extrêmes et de l'usinabilite d'un nouvel alliage de titane aeronautique: le ti555-3. phdthesis, Arts et Métiers ParisTech, 2010 [Google Scholar]
  64. Y. Ayed, G. Germain, High-pressure water-jet-assisted machining of Ti555-3 titanium alloy: investigation of tool wear mechanisms, Int. J. Adv. Manuf. Technol. 96 (2018) 845–856 [CrossRef] [Google Scholar]
  65. M. Vosough, V. Kalhori, P. Liu, I. Svenningsson, Influence of high pressure water-jet assisted turning on surface residual stresses on Ti-6AL-4V alloy by measurement and finite element simulation, 2004, p. 107–113 [Google Scholar]
  66. M. Vosough, F. Schultheiss, M. Agmell, J.-E. Ståhl, A method for identification of geometrical tool changes during machining of titanium alloy Ti6Al4V, Int. J. Adv. Manuf. Technol. 67 (2013) 339–348 [CrossRef] [Google Scholar]
  67. Y. Ayed, C. Robert, G. Germain, A. Ammar, Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining, Finite. Elem. Anal. Des. 108 (2016) 1–8 [CrossRef] [Google Scholar]
  68. S. Pervaiz, A. Rashid, I. Deiab, C.M. Nicolescu, An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti6Al4V), Int. J. Adv. Manuf. Technol. 87 (2016) 1371–1386 [CrossRef] [Google Scholar]
  69. S. Ganguli, S.G. Kapoor, Improving the performance of milling of titanium alloys using the atomization-based cutting fluid application system, J. Manuf. Process 23 (2016) 29–36 [CrossRef] [Google Scholar]
  70. K.-H. Park, G.-D. Yang, M.-G. Lee, H. Jeong, S.-W. Lee, D.Y. Lee, Eco-friendly face milling of titanium alloy, Int. J. Precis. Eng Manuf. 15 (2014) 1159–1164 [CrossRef] [Google Scholar]
  71. Pervaiz, et al. − 2016 − An experimental investigation on effect of minimum.pdf n.d. [Google Scholar]
  72. X. Qin, L. Gui, H. Li, B. Rong, D. Wang, H. Zhang, et al. Feasibility Study on the Minimum Quantity Lubrication in High-Speed Helical Milling of Ti-6Al-4V, J. Adv. Mech. Des. Syst. Manuf. 6 (2012) 1222–1233 [CrossRef] [Google Scholar]
  73. G. Le, Coz, M. Marinescu, A. Devillez, D. Dudzinski, L. Velnom, Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys, Appl. Therm. Eng. 36 (2012) 434–441 [CrossRef] [Google Scholar]
  74. A.K. Parida, K. Maity, FEM and experimental analysis of thermal assisted machining of titanium base alloys, Measurement 152 (2020) 107292 [CrossRef] [Google Scholar]
  75. H.B. Wu, S. To, Effects of electropulsing treatment on material properties and ultra-precision machining of titanium alloy, Int. J. Adv. Manuf. Technol. 82 (2016) 2029–2036 [CrossRef] [Google Scholar]
  76. S. Sun, M. Brandt, M.S. Dargusch, Thermally enhanced machining of hard-to-machine materials—A review, Int. J. Mach. Tools. Manuf. 50 (2010) 663–680 [CrossRef] [Google Scholar]
  77. C.R. Dandekar, Y.C. Shin, J. Barnes, Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining, Int. J. Mach. Tools. Manuf. 50 (2010) 174–182 [CrossRef] [Google Scholar]
  78. M.J. Bermingham, W.M. Sim, D. Kent, S. Gardiner, M.S. Dargusch, Tool life and wear mechanisms in laser assisted milling Ti-6Al-4V, Wear 322–323 (2015) 151–163 [CrossRef] [Google Scholar]
  79. M.J. Bermingham, P. Schaffarzyk, S. Palanisamy, M.S. Dargusch, Laser-assisted milling strategies with different cutting tool paths, Int. J. Adv. Manuf. Technol. 74 (2014) 1487–1494 [CrossRef] [Google Scholar]
  80. Y. Gao, G. Wang, M.J. Bermingham, M.S. Dargusch, Cutting force, chip formation, and tool wear during the laser-assisted machining a near-alpha titanium alloy BTi-6431S, Int. J. Adv. Manuf. Technol. 79 (2015) 1949–1960 [CrossRef] [Google Scholar]
  81. S. Sun, M. Brandt, M.S. Dargusch, The Effect of a Laser Beam on Chip Formation during Machining of Ti6Al4V Alloy, Metall. Mater. Trans. A 41 (2010) 1573–1581 [CrossRef] [Google Scholar]
  82. G. Germain, P. Dal Santo, J.L. Lebrun, Comprehension of chip formation in laser assisted machining, Int. J. Mach. Tools. Manuf. 51 (2011) 230–238 [CrossRef] [Google Scholar]
  83. Y. Ayed, G. Germain, A.P. Melsio, P. Kowalewski, D. Locufier, Impact of supply conditions of liquid nitrogen on tool wear and surface integrity when machining the Ti-6Al-4V titanium alloy, Int. J. Adv. Manuf. Technol. 93 (2017) 1199–1206 [CrossRef] [Google Scholar]
  84. S.Y. Hong, Y. Ding, W. Jeong, Friction and cutting forces in cryogenic machining of Ti-6Al-4V, Int. J. Mach. Tools. Manuf. 41 (2001) 2271–2285 [CrossRef] [Google Scholar]
  85. M. Dhananchezian, M. Pradeep Kumar, Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts, Cryogenics 51 (2011) 34–40 [Google Scholar]
  86. U. Kumar, P. Senthil, Performance of cryogenic treated multi-layer coated WC insert in terms of machinability on titanium alloys Ti-6Al-4V in dry turning, Mater. Today Proc. (2019) S2214785319333656 [Google Scholar]
  87. W.S. Yip, S. To, Sustainable manufacturing of ultra-precision machining of titanium alloys using a magnetic field and its sustainability assessment, Sustain. Mater. Technol. 16 (2018) 38–46 [Google Scholar]
  88. P.D. Hartung, B.M. Kramer, B.F. von Turkovich, Tool Wear in Titanium Machining, CIRP Ann. 31 (1982) 75–80 [CrossRef] [Google Scholar]
  89. K. Maity, S. Pradhan, Investigation of FEM Simulation of Machining of Titanium Alloy Using Microgroove Cutting Insert, Silicon. 10 (2018) 1949–1959 [CrossRef] [Google Scholar]
  90. R. Singh, J.S. Khamba, Mathematical modeling of tool wear rate in ultrasonic machining of titanium, Int. J. Adv. Manuf. Technol. 43 (2009) 573–580 [CrossRef] [Google Scholar]
  91. M.H. Ali, M.N.M. Ansari, B.A. Khidhir, B. Mohamed, A.A. Oshkour, Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling, J. Braz. Soc. Mech. Sci. Eng. 36 (2014) 315–324 [CrossRef] [Google Scholar]
  92. R. Li, A.J. Shih, Finite element modeling of 3D turning of titanium, Int. J. Adv. Manuf. Technol. 29 (2006) 253–261 [CrossRef] [Google Scholar]
  93. M.I. Sadik, E. Coronel, M. Lattemann, Influence of characteristic properties of PCD grades on the wear development in turning of β-titanium alloy (Ti5Al5V5Mo3Cr), Wear 426–427 (2019) 1594–1602 [CrossRef] [Google Scholar]
  94. A. Shokrani, I. Al-Samarrai, S.T. Newman, Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy, J. Manuf. Process 43 (2019) 229–243 [CrossRef] [Google Scholar]
  95. L.M. Hlaváč, L. Gembalová, P. Štěpán, I.M. Hlaváčová, Improvement of abrasive water jet machining accuracy for titanium and TiNb alloy, Int. J. Adv. Manuf. Technol. 80 (2015) 1733–1740 [CrossRef] [Google Scholar]
  96. S. Jeelani, K. Ramakrishnan, Surface damage in machining titanium 6Al-2Sn-4Zr-2Mo alloy, J. Mater. Sci. 20 (1985) 3245–3252 [CrossRef] [Google Scholar]
  97. R. Lapovok, A. Molotnikov, Y. Levin, A. Bandaranayake, Y. Estrin, Machining of coarse grained and ultra fine grained titanium, J. Mater. Sci. 47 (2012) 4589–4594 [CrossRef] [Google Scholar]
  98. Z. Liu, J. Xu, S. Han, M. Chen, A coupling method of response surfaces (CRSM) for cutting parameters optimization in machining titanium alloy under minimum quantity lubrication (MQL) condition, Int. J. Precis. Eng. Manuf. 14 (2013) 693–702 [CrossRef] [Google Scholar]
  99. K.-H. Park, G.-D. Yang, M.A. Suhaimi, D.Y. Lee, T.-G. Kim, D.-W. Kim, et al. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V, J. Mech. Sci. Technol. 29 (2015) 5121–5126 [CrossRef] [Google Scholar]
  100. Z. Ping, W. Youqiang, Research on High Speed Machining of TC17 Titanium Alloy Under Extreme Environments, Trans. Indian Inst. Met. 71 (2018) 831–839 [CrossRef] [Google Scholar]
  101. J. Bannard, On the electrochemical machining of some titanium alloys in bromide electrolytes, J. Appl. Electrochem. 6 (1976) 477–483 [CrossRef] [Google Scholar]
  102. S. Sun, J. Harris, Y. Durandet, M. Brandt, Effect of laser beam on machining of titanium alloys, Pac. Int. Conf. Appl. Lasers. Opt. 2008 (2008) 44–49 [Google Scholar]
  103. H. Jing, M. Zhou, J. Yang, S. Yao, Stable and Fast Electrical Discharge Machining Titanium Alloy with MIMO Adaptive Control System, Procedia. CIRP 68 (2018) 666–671 [CrossRef] [Google Scholar]
  104. J.F. Kahles, M. Field, D. Eylon, F.H. Froes, Machining of Titanium Alloys. JOM 37 (1985) 27–35 [CrossRef] [Google Scholar]
  105. W. Song, Z. Peng, P. Li, P. Shi, S.-B. Choi, Annular Surface Micromachining of Titanium Tubes Using a Magnetorheological Polishing Technique, Micromachines 11 (2020) 314 [CrossRef] [Google Scholar]
  106. Y. Wang, D. Hu, Study on the inner surface finishing of tubing by magnetic abrasive finishing, Int. J. Mach. Tools. Manuf. 45 (2005) 43–49 [CrossRef] [Google Scholar]
  107. A. Sharma, M.D. Sharma, R. Sehgal, Experimental Study of Machining Characteristics of Titanium Alloy (Ti-6Al-4V), Arab. J. Sci. Eng. 38 (2013) 3201–3209 [CrossRef] [Google Scholar]
  108. D. Sharma, S. Mohanty, A.K. Das, Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining, Surf. Coat. Technol. 381 (2020) 125157 [CrossRef] [Google Scholar]
  109. N. Ahmed, S. Ahmad, S. Anwar, A. Hussain, M. Rafaqat, M. Zaindin, Machinability of titanium alloy through laser machining: material removal and surface roughness analysis, Int. J. Adv. Manuf. Technol. 105 (2019) 3303–3323 [CrossRef] [Google Scholar]
  110. Y. He, W. Gan, F. Yin, J. Zhao, B. Xu, Q. Yu, et al. Multi-physical field coupling for vibration feed electrochemical machining of diamond-shaped hole in titanium alloy, Int. J. Adv. Manuf. Technol. 106 (2020) 1409–1420 [CrossRef] [Google Scholar]
  111. F. Wang, J. Zhao, Y. Lv, Z. Yang, J. Yao, Y. He, et al. Electrochemical machining of deep narrow slits on TB6 titanium alloys, Int. J. Adv. Manuf. Technol. 92 (2017) 3063–3071 [CrossRef] [Google Scholar]
  112. W. Liu, S. Ao, Y. Li, Z. Liu, Z. Wang, Z. Luo, et al. Jet electrochemical machining of TB6 titanium alloy, Int. J. Adv. Manuf. Technol. 90 (2017) 2397–2409 [CrossRef] [Google Scholar]
  113. N.J. Churi, Z.J. Pei, C. Treadwell, Rotary ultrasonic machining of titanium alloy: Effects of machining variables, Mach. Sci. Technol. 10 (2006) 301–321 [CrossRef] [Google Scholar]
  114. R. Singh, J.S. Khamba, Investigation for ultrasonic machining of titanium and its alloys, J. Mater. Process Technol. 183 (2007) 363–367 [CrossRef] [Google Scholar]
  115. S.D. Dhobe, B. Doloi, B. Bhattacharyya, Surface characteristics of ECMed titanium work samples for biomedical applications, Int. J. Adv. Manuf. Technol. 55 (2011) 177–188 [CrossRef] [Google Scholar]
  116. N. Yu, X. Fang, L. Meng, Y. Zeng, D. Zhu, Electrochemical micromachining of titanium microstructures in an NaCl-ethylene glycol electrolyte, J. Appl. Electrochem. 48 (2018) 263–273 [CrossRef] [Google Scholar]
  117. Y. Liu, N. Qu, Obtaining high surface quality in electrolyte jet machining TB6 titanium alloy via enhanced product transport, J. Mater. Process Technol. 276 (2020) 116381 [CrossRef] [Google Scholar]
  118. W. Liu, Z. Luo, Y. Li, Z. Liu, K. Li, J. Xu, et al. Investigation on parametric effects on groove profile generated on Ti1023 titanium alloy by jet electrochemical machining, Int. J. Adv. Manuf. Technol. 100 (2019) 2357–2370 [CrossRef] [Google Scholar]
  119. S. Sarkar, S. Mitra, B. Bhattacharyya, Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model, Int. J. Adv. Manuf. Technol. 27 (2006) 501–508 [CrossRef] [Google Scholar]
  120. B.B. Pradhan, M. Masanta, B.R. Sarkar, B. Bhattacharyya, Investigation of electro-discharge micro-machining of titanium super alloy, Int. J. Adv. Manuf. Technol. 41 (2009) 1094–1106 [CrossRef] [Google Scholar]
  121. A. Secilmis, A.M. Olmez, M. Dilmec, H.S. Halkaci, O. Inan, Determination of optimal EDM machining parameters for machined pure titanium-porcelain adhesion, Int. J. Adv. Manuf. Technol. 45 (2009) 55–61 [CrossRef] [Google Scholar]
  122. A. Kumar, V. Kumar, J. Kumar, Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process, Int. J. Adv. Manuf. Technol. 68 (2013) 2645–2668 [CrossRef] [Google Scholar]
  123. J. Kumar, Investigations into the surface quality and micro-hardness in the ultrasonic machining of titanium (ASTM GRADE-1), J. Braz. Soc. Mech. Sci. Eng. 36 (2014) 807–823 [CrossRef] [Google Scholar]
  124. A. Kumar, V. Kumar, J. Kumar, Semi-empirical model on MRR and overcut in WEDM process of pure titanium using multi-objective desirability approach, J. Braz. Soc. Mech. Sci. Eng. 37 (2015) 689–721 [CrossRef] [Google Scholar]
  125. R. Chalisgaonkar, J. Kumar, Investigation of the machining parameters and integrity of the work and wire surfaces after finish cut WEDM of commercially pure titanium, J. Braz. Soc. Mech. Sci. Eng. 38 (2016) 883–911 [CrossRef] [Google Scholar]
  126. B. Khosrozadeh, M. Shabgard, Effects of hybrid electrical discharge machining processes on surface integrity and residual stresses of Ti-6Al-4V titanium alloy, Int. J. Adv. Manuf. Technol. 93 (2017) 1999–2011 [CrossRef] [Google Scholar]
  127. S. Kumar, R. Singh, A. Batish, T.P. Singh, R. Singh, Investigating surface properties of cryogenically treated titanium alloys in powder mixed electric discharge machining, J. Braz. Soc. Mech. Sci. Eng. 39 (2017) 2635–2648 [CrossRef] [Google Scholar]
  128. R. Kumar, S. Roy, P. Gunjan, A. Sahoo, D.D. Sarkar, R.K. Das, Analysis of MRR and Surface Roughness in Machining Ti-6Al-4V ELI Titanium Alloy Using EDM Process, Procedia. Manuf. 20 (2018) 358–364 [CrossRef] [Google Scholar]
  129. M.Y. Tsai, C.S. Fang, M.H. Yen, Vibration-assisted electrical discharge machining of grooves in a titanium alloy (Ti-6A-4V), Int. J. Adv. Manuf. Technol. 97 (2018) 297–304 [CrossRef] [Google Scholar]
  130. A. Kushwaha, T. Jadam, S. Datta, M. Masanta, Assessment Of Surface Integrity During Electrical Discharge Machining Of Titanium Grade 5 Alloys (Ti-6Al-4V), Mater. Today Proc. 18 (2019) 2477–2485 [CrossRef] [Google Scholar]
  131. A.V.S. Ram Prasad, K. Ramji, M. Kolli, An Experimental Investigation on Machining Parameters of Titanium Alloy Using WEDM, Mater. Today Proc. 18 (2019) A12–A16 [CrossRef] [Google Scholar]
  132. A.K. Sahu, S.S. Mahapatra, Performance analysis of tool electrode prepared through laser sintering process during electrical discharge machining of titanium, Int. J. Adv. Manuf. Technol. 106 (2020) 1017–1041 [CrossRef] [Google Scholar]
  133. A. Shard, D. Shikha, V. Gupta, M.P. Garg, Effect of B4C abrasive mixed into dielectric fluid on electrical discharge machining, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 554 [CrossRef] [Google Scholar]
  134. M. Kolli, A. Kumar, Assessing the Influence of Surfactant and B4C Powder Mixed in Dielectric Fluid on EDM of Titanium Alloy, Silicon 11 (2019) 1731–1743 [CrossRef] [Google Scholar]
  135. X. Wang, Z. Liu, R. Xue, Z. Tian, Y. Huang, Research on the influence of dielectric characteristics on the EDM of titanium alloy, Int. J. Adv. Manuf. Technol. 72 (2014) 979–987 [CrossRef] [Google Scholar]
  136. M. Kolli, A. Kumar, Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method, Eng. Sci. Technol. Int. J. 18 (2015) 524–535 [Google Scholar]
  137. B. Jabbaripour, M.H. Sadeghi, M.R. Shabgard, H. Faraji, Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic, J. Manuf. Process 15 (2013) 56–68 [CrossRef] [Google Scholar]
  138. H.-M. Chow, L.-D. Yang, C.-T. Lin, Y.-F. Chen, The use of SiC powder in water as dielectric for micro-slit EDM machining, J. Mater. Process Technol. 195 (2008) 160–170 [CrossRef] [Google Scholar]
  139. B.H. Yan, H. Tsai Chung, F. Yuan Huang, The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium, Int. J. Mach. Tools. Manuf. 45 (2005) 194–200 [CrossRef] [Google Scholar]
  140. S.L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6A1-4V, J. Mater. Process Technol. 87 (1999) 107–111 [CrossRef] [Google Scholar]
  141. H.-M. Chow, B.-H. Yan, F.-Y. Huang, J.-C. Hung, Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining, J. Mater. Process Technol. 101 (2000) 95–103 [CrossRef] [Google Scholar]
  142. R.D. Dyaminov, A.N. Mal'tsev, G.V. Kargin, Electrochemical machining of titanium-rotor cast blades for vortex pumps, Chem. Pet. Eng. 13 (1977) 817–818 [CrossRef] [Google Scholar]
  143. A.D. Davydov, T.B. Kabanova, V.M. Volgin, Electrochemical machining of titanium. Review, Russ. J. Electrochem. 53 (2017) 941–965 [CrossRef] [Google Scholar]
  144. S. Hizume, W. Natsu, Influence of Machining Conditions on ECM Characteristics of Titanium Alloy in Shape Generation by Scanning Tool Electrode, Procedia. CIRP 68 (2018) 746–750 [CrossRef] [Google Scholar]
  145. S.S. Anasane, B. Bhattacharyya, Experimental investigation into fabrication of microfeatures on titanium by electrochemical micromachining, Adv. Manuf. 4 (2016) 167–177 [CrossRef] [Google Scholar]
  146. A.K. Dubey, V. Yadava, Laser beam machining—A review, Int. J. Mach. Tools. Manuf. 48 (2008) 609–628 [CrossRef] [Google Scholar]
  147. R. Farasati, P. Ebrahimzadeh, J. Fathi, R. Teimouri, Optimization of laser micromachining of Ti-6Al-4V, Int. J. Lightweight Mater. Manuf. 2 (2019) 305–317 [Google Scholar]
  148. V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, C. Dumkum, Laser ablation of titanium alloy under a thin and flowing water layer, Int. J. Mach. Tools. Manuf. 89 (2015) 14–28 [CrossRef] [Google Scholar]
  149. S. Duangwas, V. Tangwarodomnukun, C. Dumkum, Development of an Overflow-Assisted Underwater Laser Ablation, Mater. Manuf. Process 29 (2014) 1226–1231 [CrossRef] [Google Scholar]
  150. V. Tangwarodomnukun, Overflow-assisted laser machining of titanium alloy: surface characteristics and temperature field modeling, Int. J. Adv. Manuf. Technol. 88 (2017) 147–158 [CrossRef] [Google Scholar]
  151. L. Balamuth, Method and means for removing material from a solid body, US2580716A, 1952 [Google Scholar]
  152. L. Heng, Y.J. Kim, S.D. Mun, Review of Superfinishing by the Magnetic Abrasive Finishing Process, High Speed Mach. 3 (2017). https://doi.org/10.1515/hsm-2017-0004 [Google Scholar]
  153. X. Sun, Y. Zou, Study on Electrolytic Magnetic Abrasive Finishing for Finishing Stainless Steel SUS304 Plane with a Special Compound Machining Tool, J. Manuf. Mater. Process 2 (2018) 41 [Google Scholar]
  154. P. Kala, P.M. Pandey, Comparison of finishing characteristics of two paramagnetic materials using double disc magnetic abrasive finishing, J. Manuf. Process 17 (2015) 63–77 [CrossRef] [Google Scholar]
  155. A. Barman, M. Das, Design and fabrication of a novel polishing tool for finishing freeform surfaces in magnetic field assisted finishing (MFAF) process, Precis. Eng. 49 (2017) 61–68 [CrossRef] [Google Scholar]
  156. A. Barman, M. Das, Toolpath generation and finishing of bio-titanium alloy using novel polishing tool in MFAF process, Int. J. Adv. Manuf. Technol. 100 (2019) 1123–1135 [CrossRef] [Google Scholar]
  157. A. Barman, M. Das, Magnetic field assisted finishing process for super-finished Ti alloy implant and its 3D surface characterization, J. Micromanufacturing 1 (2018) 154–169 [CrossRef] [Google Scholar]
  158. Z. Fan, Y. Tian, Q. Zhou, C. Shi, Enhanced magnetic abrasive finishing of Ti-6Al-4V using shear thickening fluids additives, Precis. Eng. 64 (2020) 300–306 [CrossRef] [Google Scholar]
  159. W. Li, Y. Chen, M. Cheng, Y. Lv, Effect of Magnetic Head Shape on Processing of Titanium Alloy Wire by Magnetic Abrasive Finishing, Materials 13 (2020) 1401 [CrossRef] [Google Scholar]
  160. K. Zhou, Y. Chen, Z.W. Du, F.L. Niu, Surface integrity of titanium part by ultrasonic magnetic abrasive finishing, Int. J. Adv. Manuf. Technol. 80 (2015) 997–1005 [CrossRef] [Google Scholar]
  161. M. Kolli, A. Kumar, Effect of Boron Carbide Powder Mixed into Dielectric Fluid on Electrical Discharge Machining of Titanium Alloy, Procedia. Mater. Sci. 5 (2014) 1957–1965 [CrossRef] [Google Scholar]
  162. B. Kumar, Baroi, S. Kar, P. Kumar, Patowari, Electric Discharge Machining of Titanium Grade 2 Alloy and its Parametric Study, Mater. Today Proc. 5 (2018) 5004–5011 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.