Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 35
Number of page(s) 8
Published online 29 September 2020
  1. J. Lapin, TiAl-based alloys: Present status and future perspectives, In Conference proceedings METAL, 2009 [Google Scholar]
  2. S.F. Clark, 787 propulsion system, Aero Quart. 3 (2012) 5 –13 [Google Scholar]
  3. B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temperatur. 33 (2016) 549–559 [CrossRef] [Google Scholar]
  4. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, D.S. Easton, Tensile properties and fracture toughness of TiAl alloys with controlled microstructures, Intermetallics 4 (1996) 429–440 [CrossRef] [Google Scholar]
  5. C.M. Austin, Current status of gamma Ti aluminides for aerospace applications, Curr. Opin. Solid State Mater. Sci. 4 (1999) 239–242 [CrossRef] [Google Scholar]
  6. T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, M. Takeyama, Fabrication of TiAl components by means of hot forging and machining, Intermetallics 13 (2005) 971–978 [CrossRef] [Google Scholar]
  7. D. Hu, X. Wu, M.H. Loretto, Advances in optimisation of mechanical properties in cast TiAl alloys, Intermetallics 13 (2005) 914–919 [CrossRef] [Google Scholar]
  8. Y.W. Kim, D.M. Dimiduk, Progress in the understanding of gamma titanium aluminides, J. Minerals Metals Mater. Soc. 43 (1991) 40–47 [CrossRef] [Google Scholar]
  9. W.E. Voice, M. Henderson, E.F. Shelton, X. Wu, Gamma titanium aluminide, TNB, Intermetallics 13 (2005) 959–964 [CrossRef] [Google Scholar]
  10. X. Wu, Review of alloy and process development of TiAl alloys, Intermetallics 14 (2006) 1114–1122 [CrossRef] [Google Scholar]
  11. P.M.W. Cobbinah, Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys, Adv. Mater. Sci. Eng. (2019) [Google Scholar]
  12. M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro, P. Bertrand, The prospects for additive manufacturing of bulk TiAl alloy, Mater. High Temperatur. 33 (2016) 571–577 [CrossRef] [Google Scholar]
  13. T.C. Dzogbewu, Y.D. Arthur, Comparative studies of locally produced and imported low-carbon steels on the Ghanaian market, J. Natur. Sci. 1 (2013) 15–22 [Google Scholar]
  14. T. Vilaro, V. Kottman-Rexerodt, M. Thomas, C. Colin, P. Bertrand, L. Thivillon, S. Abed, V. Ji, P. Aubry, P. Peyre, T. Malot, Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes, Adv. Mater. Res. 89 (2010) 586–591 [CrossRef] [Google Scholar]
  15. D. Cormier, O.L.A. Harrysson, T. Mahale, H. West, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Res. Lett. Mater. Sci. (2007) 1–4 [CrossRef] [Google Scholar]
  16. T.C. Dzogbewu, Direct metal laser sintering of titanium alloys for biomedical applications, Central University of Technology, Free State, Doctoral dissertation, 2017 [Google Scholar]
  17. I. Yadroitsau, Direct manufacturing of 3D objects by selective laser melting of metal powders, Saint-Etienne, Doctoral dissertation, 2008 [Google Scholar]
  18. T.C. Dzogbewu, L. Monaheng, I. Yadroitsava, W.B. Du Preez, I. Yadroitsev, Finite element analysis in design of DMLS mandible implants, in Challenges for Technology Innovation: An Agenda for the Future (CRC Press, 2017), pp. 155–160 [CrossRef] [Google Scholar]
  19. H. Clemens, H. Kestler, Processing and applications of intermetallic γ‐TiAl‐based alloys, Adv. Eng. Mater. 2 (2000) 551–570 [Google Scholar]
  20. I. Gil, M.A. Muñoz-Morris, D.G. Morris, The effect of heat treatments on the microstructural stability of the intermetallic Ti-46.5 Al-2W-0.5 Si, Intermetallics 9 (2001) 373–385 [CrossRef] [Google Scholar]
  21. D. Srivastava, Microstructural characterization of the γ-TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique, Bull. Mater. Sci. 25 (2002) 619–633 [CrossRef] [Google Scholar]
  22. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater. 58 (2010) 1887–1894 [CrossRef] [Google Scholar]
  23. A.R. Rastkar, B. Shokri, Surface transformation of Ti-45Al-2Nb-2Mn-1B titanium aluminide by electron beam melting, Surf. Coat. Technol. 204 (2010) 1817–1822 [CrossRef] [Google Scholar]
  24. N. Shen, K. Chou, Thermal modeling of electron beam additive manufacturing process: powder sintering effects, in International Manufacturing Science and Engineering Conference, 287, ASME , 2012 [Google Scholar]
  25. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics 19 (2011) 776–778 [CrossRef] [Google Scholar]
  26. L. Löber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, Comparison of selective laser and electron beam melted titanium aluminides, in Solid freeform fabrication proceedings , University of Texas, Austin, 2011 [Google Scholar]
  27. L. Caprio, A.G. Demir, G. Chiari, B. Previtali, Defect-free laser powder bed fusion of Ti–48Al–2Cr–2Nb with a high temperature inductive preheating system, J. Phys.: Photonics 2 (2020) 024001 [CrossRef] [Google Scholar]
  28. Y.L.S.J. Liu, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting and selective laser melting, Acta Materialia 113 (2016) 56–67 [CrossRef] [Google Scholar]
  29. T.C. Dzogbewu, L. Monaheng, J. Els, I. van Zyl, W.B. Du Preez, I. Yadroitsava, I. Yadroitsev, Evaluation of the compressive mechanical properties of cellular dmls structures for biomedical applications, in 17th Annual Conference of the Rapid Product Development Association of South Africa , 2016 [Google Scholar]
  30. I. Yadroitsev, I. Smurov, Surface morphology in selective laser melting of metal powders, Phys. Proc. 12 (2011) 264–270 [CrossRef] [Google Scholar]
  31. J. Gussone, G. Garces, J. Haubrich, A. Stark, Y.C. Hagedorn, N. Schell, G. Requena, Microstructure stability of γ-TiAl produced by selective laser melting, Scr. Mater. 130 (2017) 110–113 [CrossRef] [Google Scholar]
  32. U.S. Bertoli, G. Guss, S. Wu, M.J. Matthews, J.M. Schoenung, In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing, Mater. Des. 135 (2017) 385–396 [CrossRef] [Google Scholar]
  33. Q. Shi, D. Gu, M. Xia, S. Cao, T. Rong, Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites, Opt. Laser Technol. 84 (2016) 9–22 [CrossRef] [Google Scholar]
  34. J. Gussone, Y.C. Hagedorn, H. Gherekhloo, G. Kasperovich, T. Merzouk, J. Hausmann, Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures, Intermetallics 66 (2015) 133–140 [CrossRef] [Google Scholar]
  35. S. Das, J. McWilliam, B. Wu, J.J. Beaman, Design of a high temperature workstation for the selective laser sintering process, in International Solid Freeform Fabrication Symposium , 1991 [Google Scholar]
  36. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser sintering of metals, Rapid Prototyp. J. 1 (1995) 26–36 [CrossRef] [Google Scholar]
  37. J. McWilliams, C. Hysinger, J.J. Beaman, Design of a high temperature process chamber for the selective laser sintering process, in International Solid Freeform Fabrication Symposium, 1992 [Google Scholar]
  38. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manufactur. 1 (2014) 77–86 [Google Scholar]
  39. A.G. Demir, B. Previtali, Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction, Int. J. Adv. Manufactur. Technol. 93 (2017) 2697–2706 [CrossRef] [Google Scholar]
  40. M. Colopi, A.G. Demir, L. Caprio, B. Previtali, Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser, Int. J. Adv. Manufactur. Technol. 104 (2019) 24 [CrossRef] [Google Scholar]
  41. J. Wilkes, Y.C. Hagedorn, W. Meiners, K. Wissenbach, Additive manufacturing of ZrO2‐Al2O3 ceramic components by selective laser melting, Rapid Prototyp. J. 19 (2013) 51–57 [CrossRef] [Google Scholar]
  42. K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, J.P. Kruth, Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating, J. Manufactur. Sci. Eng. 136 (2014) 061026 [CrossRef] [Google Scholar]
  43. H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V, Mater. Sci. Eng. A 695 (2017) 211–220 [CrossRef] [Google Scholar]
  44. Y.C. Hagedorn, J. Risse, W. Meiners, N. Pirch, K. Wissenbach, R. Poprawe, Processing of nickel based superalloy MAR M-247 by means of high temperature-selective laser melting (HT-SLM), in Proc 6th Int Conf Adv Res Virtual Rapid Prototyp (2013) [Google Scholar]
  45. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol. 214 (2014) 2915–2925 [CrossRef] [Google Scholar]
  46. T.C. Dzogbewu, Laser powder bed fusion of Ti15Mo, Results Eng. (2020) 100155 [CrossRef] [Google Scholar]
  47. L. Löber, F.P. Schimansky, U. Kühn, F. Pyczak, J. Eckert, Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy, J. Mater. Process. Technol. 214 (2014) 1852–1860 [CrossRef] [Google Scholar]
  48. W. Ge, C. Guo, F. Lin, Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting, Proc. Eng. 81 (2014) 1192–1197 [CrossRef] [Google Scholar]
  49. A. Zenani, T.C. Dzogbewu, W.B. Du Preez, I. Yadroitsev, Optimum process parameters for direct metal laser sintering of Ti6Al Powder Blend, Univ. J. Mech. Eng. 8 (2020) 170–182 [CrossRef] [Google Scholar]
  50. H. Okamoto, H. Okamoto, Phase diagrams for binary alloys (ASM International, Materials Park, OH, 2000) [Google Scholar]
  51. B. Tang, B. Zhu, W. Bi, Y. Liu, J. Li, Effect of microstructure on the high-cycle fatigue behavior of Ti (43-44) Al4Nb1Mo (TNM) alloys, Metals 9 (2019) 1043 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.