Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 29
Number of page(s) 11
Published online 08 September 2020
  1. M.A. Rosen, S. Koohi-Fayegh, The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems, Energy, Ecol. Environ. 1 (2016) 10–29 [CrossRef] [Google Scholar]
  2. S.C. Kluiters, Status review on membrane systemsa for hydrogen separation, Energy Cent. Netherlands Pettern, Netherlands, 2004, p. 1–8 [Google Scholar]
  3. S. Adhikari, S. Fernando, B. Engineering, M. State, Hydrogen membrane separation techniques, Ind. Eng. Chem. Res. 45 (2006) 875–881 [CrossRef] [Google Scholar]
  4. K.S. Rothenberger, B.H. Howard, R.P. Killmeyer, A.V. Cugini, R.E. Enick, F. Bustamante, et al., Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressure, J. Memb. Sci. 107 (2003) 19–37 [CrossRef] [Google Scholar]
  5. N. Boes, H. Zuchner, Diffusion of hydrogen and deuterium in Ta, Nb and V, Phys. Stat. Solid A 17 (1973) 111–114 [CrossRef] [Google Scholar]
  6. J. Chen, S. Qiu, L. Yang, Z. Xu, Y. Deng, Y. Xu, Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys, J. Nucl. Mater. 302 (2002) 135–142 [CrossRef] [Google Scholar]
  7. P. Kamakoti, B.D. Morreale, M.V. Ciocco, B.H. Howard, R.P. Killmeyer, A.V. Cugini, D.S. Sholl, Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes, Science. 307 (2005) 569–574 [CrossRef] [Google Scholar]
  8. D.J. Edlund, J. Mccarthy, The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime, J. Memb. Sci. 107 (1995) 147–153 [CrossRef] [Google Scholar]
  9. S. Uemiya, Brief review of steam reforming using a metal membrane reactor, Top. Catal. 29 (2004) 79–84 [CrossRef] [Google Scholar]
  10. S. Yan, H. Maeda, K. Kusakabe, S. Morooka, Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation, Ind. Eng. Chem. Res. 33 (1994) 616–622 [CrossRef] [Google Scholar]
  11. V. Jayaraman, Y.S. Lin, M. Pakala, R.Y. Lin, Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition, J. Memb. Sci. 99 (1995) 89–100 [CrossRef] [Google Scholar]
  12. Y. Huang, R. Dittmeyer, Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion, J. Memb. Sci. 282 (2006) 296–310 [CrossRef] [Google Scholar]
  13. H.Y. Lee, S.H. Jung, S.Y. Lee, Y.H. You, K.H. Ko, Correlation between Al2O3 particles and interface of Al–Al2O3 coatings by cold spray, Appl. Surf. Sci. 252 (2005) 1891–1898 [CrossRef] [Google Scholar]
  14. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying, Acta Mater. 51 (2003) 4379–4394 [CrossRef] [Google Scholar]
  15. W.Y. Li, H. Liao, C.J. Li, G. Li, C. Coddet, X. Wang, On high velocity impact of micro-sized metallic particles in cold spraying, Appl. Surf. Sci. 253 (2006) 2852–2562 [CrossRef] [Google Scholar]
  16. S.T. Oyinbo, T.-C. Jen, A comparative review on cold gas dynamic spraying processes and technologies, Manuf. Rev. 6 (2019) 11–13 [Google Scholar]
  17. S.T. Oyinbo, T.-C. Jen, Feasibility of numerical simulation methods on the Cold Gas Dynamic Spray (CGDS) deposition process for ductile materials, Manuf. Rev. 7 (2020) 1–15 [Google Scholar]
  18. S. Lee, B.D. Yu, D. Kim, N.M. Hwang, Effects of cluster size and substrate temperature on the homoepitaxial deposition of Au clusters, J. Cryst. Growth 242 (2002) 463–470 [CrossRef] [Google Scholar]
  19. D. Alamanova, V.G. Grigoryan, M. Springborg, Deposition of copper clusters on the Cu ( 1 1 1) surface, Surf. Sci. 602 (2008) 1413–1422 [CrossRef] [Google Scholar]
  20. T. Fang, S. Kang, J. Liao, Impact and spreading behavior of cluster atoms bombarding substrates, Appl. Surf. Sci. 256 (2009) 1395–1398 [CrossRef] [Google Scholar]
  21. S.G. Lee, H. Choi, Y.C. Chung, Molecular dynamics simulation of film growth characterization of Fe and Cu on Cu(111) surface in the early stages of the deposition process, Curr. Appl. Phys. 11 (2011) 65–68 [CrossRef] [Google Scholar]
  22. S.T. Oyinbo, T.-C. Jen, Molecular dynamics investigation of temperature effect and surface configurations on multiple impacts plastic deformation in a palladium-copper composite metal membrane (CMM): A cold gas dynamic spray (CGDS) process, Comput. Mater. Sci. 185 (2020) 109968 [CrossRef] [Google Scholar]
  23. S.T. Oyinbo, T.-C. Jen, Investigation of the process parameters and restitution coefficient of ductile materials during cold gas dynamic spray (CGDS) using finite element analysis, Addit. Manuf. 31 (2020) 100986 [Google Scholar]
  24. H. Gao, C. Liu, F. Song, Molecular dynamics simulation of the influence factors of particle depositing on surface during cold spray, Adv. Mater. Res. 654 (2013) 1916–1924 [CrossRef] [Google Scholar]
  25. H. Gao, L. Zhao, D. Zeng, L. Gao, Molecular dynamics simulation of au cluster depositing on au surface in cold gas spray, in First Int Conf Integr Commer Micro Nanosyst Parts A B, 2007, pp. 1–8 [Google Scholar]
  26. T. Malama, A. Hamweendo, I. Botef, Molecular dynamics simulation of Ti and Ni particles on Ti substrate in the molecular dynamics simulation of Ti and Ni particles on Ti substrate in the Cold Gas Dynamic Spray (CGDS) process, Process. Mater. Sci. Forum 828–829 (2015) 453–460 [CrossRef] [Google Scholar]
  27. A. Joshi, S. James, Molecular dynamics simulation study of cold spray process, J. Manuf. Process 33 (2018) 136–143 [CrossRef] [Google Scholar]
  28. A. Joshi, S. James, Molecular dynamics simulation study on effect of process parameters on coatings during cold spray process, Proc. Manuf. 26 (2018) 190–197 [Google Scholar]
  29. B. Daneshian, H. Assadi, Impact behavior of intrinsically brittle nanoparticles: a molecular dynamics perspective, J. Therm. Spray Technol. 23 (2014) 541–550 [CrossRef] [Google Scholar]
  30. M.G. Del Popolo, E.P.M. Leiva, H. Kleine, J. Meier, U. Stimming, M. Mariscal et al., A combined experimental and theoretical study of the generation of palladium clusters on Au (111) with a scanning tunnelling microscope, Electrochim. Acta 48 (2003) 1287–1294 [CrossRef] [Google Scholar]
  31. M. Del Popolo, E. Leiva, H. Kleine, J. Meier, U. Stimming, M. Mariscal et al., Generation of palladium clusters on Au(111) electrodes: experiments and simulations, Appl. Phys. Lett. 81 (2012) 2635–2637 [CrossRef] [Google Scholar]
  32. X. Guo, B. Zhong, P. Brault, Growth and ripening of two-dimensional palladium islands on Ni (111) surface, Surf. Sci. 409 (1998) 452–457 [CrossRef] [Google Scholar]
  33. M.I. Rojas, M.G. Del Po, E.P.M. Leiva, Simulation study of Pd submonolayer films on Au (hkl) and Pt (hkl) and their relationship to underpotential deposition, Langmuir 16 (2000) 9539–9546 [CrossRef] [Google Scholar]
  34. S. Plimpton, Fast parallel algorithms for short-range molecular dynamic, J. Comput. Phys. 117 (1995) 1–19 [Google Scholar]
  35. F. Spaepen, A survey of energies in materials science, Philos. Mag. 85 (2005) 2979–2987 [CrossRef] [Google Scholar]
  36. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Model Simul. Mater. Sci. Eng. 20 (2012) 045021 [CrossRef] [Google Scholar]
  37. A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Model. Simul. Mater. Sci. Eng. 20 (2010) 085001 [NASA ADS] [CrossRef] [Google Scholar]
  38. A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Model. Simul. Mater. Sci. Eng. 20 (2012) 085007 [CrossRef] [Google Scholar]
  39. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69 (2004) 1–10 [Google Scholar]
  40. M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443–6453 [CrossRef] [Google Scholar]
  41. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 1 (1967) 98–103 [CrossRef] [Google Scholar]
  42. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, W.C. Swope, H.C. Andersen, et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters computer simulation method for the calculation of ∼ uilibrium constants for the formation, J. Chem. Phys. 76 (1982) 637–649 [NASA ADS] [CrossRef] [Google Scholar]
  43. C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123 (2005) 134101 [CrossRef] [Google Scholar]
  44. T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Mater. 54 (2006) 729–742 [CrossRef] [Google Scholar]
  45. S. Goel, N. Haque, V. Ratia, A. Agrawal, A. Stukowski, Atomistic investigation on the structure − property relationship during thermal spray nanoparticle impact, Comput. Mater. Sci. 84 (2014) 163–174 [CrossRef] [Google Scholar]
  46. C. Escure, M. Vardelle, P. Fauchais, Experimental and theoretical study of the impact of alumina droplets on cold and hot substrates, Plasma Chem. Plasma Process 23 (2003) 185–221 [CrossRef] [Google Scholar]
  47. J. Shimizu, E. Ohmura, Y. Kobayashi, S. Kiyoshima, H. Eda, Molecular dynamics simulation of flattening process of a high-temperature, high-speed droplet — influence of impact parameters, J. Therm Spray Technol. 16 (2007) 722–728 [CrossRef] [Google Scholar]
  48. F. Shimizu, S. Ogata, J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mater. Trans. 48 (2007) 2923–2927 [CrossRef] [Google Scholar]
  49. R. Ahmed, N.H. Faisal, S.M. Knupfer, A.M. Paradowska, Neutron diffraction residual strain measurements in plasma sprayed nanostructured hydroxyapatite coatings for orthopaedic implants, Mater. Sci. Forum 652 (2010) 309–314 [CrossRef] [Google Scholar]
  50. J. Vlcek, L. Gimeno, H. Huber, E. Lugscheider, A systematic approach to material eligibility for the cold-spray process, J. Therm Spray Technol. 14 (2005) 125–133 [Google Scholar]
  51. C.-J. Li, W.-Y. Li, H. Liao, Examination of the critical velocity for deposition of particles in cold spraying, J. Therm. Spray Technol. 15 (2006) 212–222 [CrossRef] [Google Scholar]
  52. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, E.J. Lavernia, Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings, Surf. Coatings Technol. 201 (2006) 3422–3429 [CrossRef] [Google Scholar]
  53. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux, E. Irissou, The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats, J. Therm. Spray Technol. 21 (2012) 288–303 [CrossRef] [Google Scholar]
  54. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, M.F. Smith, Particle velocity and deposition efficiency in the cold spray process, J. Therm. Spray Technol. 8 (1999) 576–582 [CrossRef] [Google Scholar]
  55. R. Ghelichi, S. Bagherifard, M. Guagliano, M. Verani, Numerical simulation of cold spray coating, Surf. Coatings Technol. 205 (2011) 5294–5301 [CrossRef] [Google Scholar]
  56. M. Grujicic, C. Zhao, W. DeRosset, D. Helfritch, Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Mater. Des. 25 (2004) 681–688 [CrossRef] [Google Scholar]
  57. D.Y. Ju, M. Nishida, T. Hanabusa, Simulation of the thermo-mechanical behavior and residual stresses in the spray coating process, J. Mater. Process. Technol. 92–93 (1999) 243–250 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.