Open Access
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 38
Number of page(s) 13
DOI https://doi.org/10.1051/mfreview/2020034
Published online 23 November 2020
  1. C. Veiga, J.P. Davim, A. Loureiro, Properties and applications of Titanium alloys: a brief review properties and applications of titanium, properties, and applications of titanium, Rev. Adv. Mater. Sci. 32 (2012) 133–148 [Google Scholar]
  2. A.R. Machado, J. Wallbank, Machining of titanium and its alloys: a review, Proc. IMechE 204 (2005) 53–60 [CrossRef] [Google Scholar]
  3. M. Armendia, A. Garay, L.M. Iriarte, P.J. Arrazola, Comparison of the machinabilities of Ti6Al4V and TIMETAL using uncoated WC–Co tools, J. Mater. Proc. Technol. 210 (2010) 197–203 [CrossRef] [Google Scholar]
  4. J. Paulo Davim, Machining of titanium alloys, Springer, 2014 [Google Scholar]
  5. S. Sharif, E.A. Rahim, Performance of coated-and uncoated carbide tools when drilling titanium alloy—Ti–6Al4V, J. Mater. Proc. Technol. 185 (2007) 72–76 [CrossRef] [Google Scholar]
  6. M. Younas, S. Jaffery, M. Khan, M. Ali khan, R. Ahmad, A. Mubashar, L. Ali, E. Tascioglu, A. Gharibi, Y. Kaynak, Multi-objective optimization for sustainable turning Ti6Al4V alloy using grey relational analysis (GRA) based on analytic hierarchy process (AHP) high speed machining of near-beta titanium Ti-5553 alloy under various cooling and lubrication conditions, Int. J. Adv. Manuf. Technol. 102 (2019) 4257–4271 [CrossRef] [Google Scholar]
  7. G.D. Mello, P. Srinivas, A. Prashant, Surface roughness analysis in high speed turning of Ti-6Al-4V using coated carbide inserts: experimental and modeling studies, Tribol. Ind. 40 (2018) 457–476 [CrossRef] [Google Scholar]
  8. S. Pervaiz, I. Deiab, A. Rashid, M. Nicolescu, Minimal quantity cooling lubrication in turning of Ti6Al4V: influence on surface roughness, cutting force and tool wear, Proc. IMechE Part B 1 (2015) 1–17 [Google Scholar]
  9. S. Ranti Oke, G. Seun Ogunwande, M. Onifade, E. Aikulola, E. Dolapo Adewale, O. Emmanuel Olawale, B. Ebun Ayodele, F. Mwema, J. Obiko, M.O. Bodunrin, An overview of conventional and non-conventional techniques for machining of titanium alloys, Manufactur. Rev. 7 (2020) 34 [CrossRef] [Google Scholar]
  10. B. Prianka, Zaman, S. Saha, N. Ranjan Dhar, Hybrid Taguchi-GRA-PCA approach for multi-response optimization of turning process parameters under HPC condition, Int. J. Mach. Mach. Mater. 22 (2020) 281–308 [Google Scholar]
  11. M. Mia, M.A. Khan, N.R. Dhar, High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on surface roughness and tool wear, Int. J. Adv. Manuf. Technol. 90 (2017) 1825–1834 [CrossRef] [Google Scholar]
  12. M. Mia, M.A. Khan, N.R. Dhar, Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC too, Int. J. Adv. Manuf. Technol. 93 (2017) 975–991 [CrossRef] [Google Scholar]
  13. M. Mia, M.A. Khan, S.S. Rahman, N.R. Dhar, Mono-objective and, multi-objective optimization of performance parameters in high-pressure coolant assisted turning of Ti-6Al-4V, Int. J. Adv. Manuf. Technol. 90 (2017) 109–118 [CrossRef] [Google Scholar]
  14. B. Słodki, Z. Wojciech, G. Struzikiewicz, Turning titanium alloy, grade 5 ELI, with the implementation of high pressure coolant, Materials 12 (2019) [Google Scholar]
  15. M.V. Ramana, G.K. Mohan Rao, D.H. Rao, Optimization and effect of process parameters on tool wear in turning of titanium alloy under different machining conditions, Int. J. Mater. Mech. Manuf. 2 (2014) 272–277 [Google Scholar]
  16. I. Deiab, S.W. Raza, S. Pervaiz, Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4Valloy, Proc. CIRP 17 (2014) 766–771 [CrossRef] [Google Scholar]
  17. D. Mark Benjamin, V.N. Sabarish, M.V. Hariharan, D. Samuel Raj, On the benefits of sub-zero air supplemented minimum quantity lubrication systems: an experimental and mechanistic investigation end milling of Ti-6-Al-4-V alloy, Tribol. Int. (2017), doi: 10.1016/j.triboint.2017.11.021 [Google Scholar]
  18. K. Arun Vikram, V.V.K. Lakshmi, A.M. Venkat Praveen, Evaluation of process parameters using GRA while machining low machinability material in dry and wet conditions, Mater. Today Proc. 5 (2018) 25477–25485 [CrossRef] [Google Scholar]
  19. V.R. Vaddi, V.K. Sridhar Reddy, Ch. Pogaku, S.K. Bushaboina, Optimization of electrical discharge machining of titanium alloy (Ti-Al-4V) using the Taguchi-Dear method, SAE Technical Paper (2018) 28–0032 [Google Scholar]
  20. S.H.I. Jeffery, P.T. Mativenga, Wear mechanisms analysis for turning Ti-6Al-4V − towards the development of suitable tool coatings, Int. J. Adv. Manuf. Tech. 58 (2012) 479–493 [CrossRef] [Google Scholar]
  21. Y. Tamerabeta, M. Briouaa, M. Tamerabeta, S. Khoualdia, Experimental investigation on tool wear behavior and cutting temperature during dry machining of carbon steel SAE 1030 using KC810 and KC910 coated inserts, Tribol. Ind. 40 (2018) 52–65 [CrossRef] [Google Scholar]
  22. N. Kumar Sahu, A.B. Andhare, Multi-objective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms, J. Computat. Des. Eng. 6 (2019) 1–12 [Google Scholar]
  23. K.N.S.R. Ganesh, Kantharaj, S. Kumar, Multi-response optimization of Ti-6Al-4V milling using AlCrN/TiAlN coated tool under cryogenic cooling, J. Product. Syst. Manufactur. Sci. 1 (2020) 29–41 [Google Scholar]
  24. N. Li, Y. Chen, D. Kong, Multi-response optimization of Ti-6Al-4V turning operations using Taguchi-based grey relational analysis coupled with kernel principal component analysis, Adv. Manuf. 7 (2019) 142–154 [CrossRef] [Google Scholar]
  25. S. Ranti Oke, G. Seun Ogunwande, M. Onifade, E. Aikulola, E. Dolapo Adewale, O. Emmanuel Olawale, B. Ebun Ayodele, F. Mwema, J. Obiko, M. Oluwatosin Bodunrin, An overview of conventional and non-conventional techniques for machining of titanium alloys, Manufactur. Rev. 7 (2020) 34 [CrossRef] [Google Scholar]
  26. S. Jafferry, P.T. Mativegan, Assessment of the machinability of Ti-6AL-4V alloy using wear map approach, Int. J. Adv. Manuf. Technol. 40 (2009) 687–696 [CrossRef] [Google Scholar]
  27. T. Muthuramlingam, S. Vasanth, P. Vinoth Kumar, T. Geethapriya, M. Mohammed Rabik, Multi-criteria decision making of abrasive flow oriented process parameters in abrasive jet machining using Taguchi-dear methodology, Silicon (2018) 2015–2021 [CrossRef] [Google Scholar]
  28. S. Pervaiz, A. Rashid, I. Deiab, C.M. Nicolescu, An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti6Al4V), Int. J. Adv. Manuf. 87 (2016) 1371–1386 [CrossRef] [Google Scholar]
  29. S. Sharif, E.A. Rahim, Performance of coated-and uncoated carbide tools when drilling titanium alloy—Ti–6Al4V, J. Mater. Proc. Technol. 185 (2007) 72–76 [CrossRef] [Google Scholar]
  30. S. Sharma Vishal, M. Dogra, N.M. Suri, Cooling techniques for improved productivity in turning, Int. J. Mach. Tools Manufact. 49 (2009) 435–453 [CrossRef] [Google Scholar]
  31. B.S. Prasad, J.U. Rao, A. Gopala Krishna, Analysis of vibration signals to quantify displacement amplitude in the monitoring of vibration-assisted turning, Proc. Inst. Mech. Eng. E 233 (2019) 35–47 [CrossRef] [Google Scholar]
  32. Z.A. Zoya, R. Krishnamurthy, The performance of CBN tools in the machining of titanium alloys, J. Mater. Process. Technol. 100 (2000) 80–86 [CrossRef] [Google Scholar]
  33. https://www.kennametal.com/CatalogsLiterature/Industry%20Solutions/Titaniummaterial_Machining_guide_Aerospace [Google Scholar]
  34. H. Schulz, T. Moriwaki, High-speed machining, CIRP Ann. 41 (1992) 637–643 [CrossRef] [Google Scholar]
  35. Y. Fan, Z. Hao, M. Zheng, S. Yang, Wear characteristics of cemented carbide tool in dry machining Ti-6Al-4V, Mach. Sci. Technol. 20 (2016) 249–261 [CrossRef] [Google Scholar]
  36. M. Younas, Tool wear progression, and its effect on energy consumption in turning of titanium alloy (Ti-6Al-4V). Mech. Sci. 2 (2019) 373–382 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.