Open Access
Manufacturing Rev.
Volume 9, 2022
Article Number 3
Number of page(s) 13
Published online 01 February 2022
  1. T.J. Ko, H.S. Kim, Surface integrity and machineability in intermittent hard turning, The International J. Adv. Manuf. Technol. 18 (2011) 168–175 [Google Scholar]
  2. D.D. Trung, N.V. Thien, N.T. Nguyen, Application of TOPSIS Method in Multi-Objective Optimization of the Grinding Process Using Segmented Grinding Wheel, Tribol. Ind. 43 (2021) 12–22 [CrossRef] [Google Scholar]
  3. T.V. Dich, N.T. Binh, N.T. Dat, N.V. Tiep, T.X. Viet, Manufacturing technology, Science and Technics Publishing House, Ha Noi, (2003) [Google Scholar]
  4. D.D. Trung, Multi-objective optimization of SKD11 steel milling process by reference ideal method, Int. J. Geol. 15 (2021) 1–16 [CrossRef] [Google Scholar]
  5. V.C. Nguyen, T.D. Nguyen, D.H. Tien, Cutting Parameter Optimization in Finishing Milling of Ti-6Al-4V Titanium Alloy under MQL Condition using TOPSIS and ANOVA Analysis, Engineering, Technol. Appli. Sci. Res. 11 (2021) 6775–6780 [CrossRef] [Google Scholar]
  6. N.L. Khanh, N.V. Cuong, The combination of taguchi and proximity indexed value methods for multi-criteria decision making when milling, Int. J. Mech. 15 (2021) 1–9 [Google Scholar]
  7. S.K. Shihab, A.K. Chanda, Multi response optimization of milling process parameters using moora method, Int. J. Mech. Prod. Eng. 3 (2015) 67–71 [Google Scholar]
  8. G.V.A. Kumar, D.V.V. Reddy, N. Nagaraju, Multi-objective optimization of end milling process parameters in machining of en 31 steel: application of ahp embedded with vikor and waspas methods, i-manager's, J. Mech. Eng. 8 (2018) 39–46 [Google Scholar]
  9. T. Ghosh, Y. Wang, K. Martinsen, K. Wang, A surrogate-assisted optimization approach for multi-response end milling of aluminum alloy AA3105, Int. J. Adv. Manuf. Technol. 111 (2020) 2419–2439 [CrossRef] [Google Scholar]
  10. N.T. Nguyen, D.D. Trung, combination of taguchi method, moora and copras technique in multi-objective optimization of surface grinding process, J. Applied Eng. Sci. 19 (2021) 390–398 [CrossRef] [MathSciNet] [Google Scholar]
  11. D.H. Tien, D.D. Trung, N.V. Thien, N.T. Nguyen, Multi-objective optimization of the cylindrical grinding process of scm440 steel using preference selection index method, J. Mach. Eng. 21 (2021) 110–123 [Google Scholar]
  12. C. Maheswara Rao, K. Venkatasubbaiah, Application of mcdm approach-topsis for the multi-objective optimization problem, Int. J. Grid Distrib. Comput. 9 (2016) 17–32 [Google Scholar]
  13. N.V. Thien, D.H. Tien, D.D. Trung, N.T. Nguyen, Multi-objective optimization of turning process using a combination of taguchi and VIKOR methods, J. Applied Eng. Sci. (2021) 1–6 (Online first) [Google Scholar]
  14. D.B. Prakash, G. Krishnaiah, Optimization of process parameters using AHP and vikor when turning AISI 1040 steel with coated tools, Int. J. Mech. Eng. Technol. 8 (2017) 241–248 [Google Scholar]
  15. M. Abas, B. Salah, Q.S. Khalid, I. Hussain, A.R. Babar, R. Nawaz, R. Khan, W. Saleem, Experimental Investigation and Statistical Evaluation of Optimized Cutting Process Parameters and Cutting Conditions to Minimize Cutting Forces and Shape Deviations in Al6026-T9, Mater. 13 (2020) 1–21 [Google Scholar]
  16. A. Saha, H. Majumder, Multi criteria selection of optimal machining parameter in turning operation using comprehensive grey complex proportional assessment method for ASTM A36, Int. J. Eng. Res. Africa 23 (2016) 24–32 [Google Scholar]
  17. C.M. Rao, P.S. Reddy, D. Suresh, R.J. Kumar, Optimization of turning process parameters using psi-based desirability-grey analysis, Recent Adv. Mater. Sci. 2019 (2019) 231–246 [Google Scholar]
  18. R.K. Suresh, G. Krishnaiah, P. Venkataramaiah, Selection of best novel MCDM method during turning of hardened AISI D3 tool steel under minimum quantity lubrication using bio-degradable oils as cutting fluids, Int. J. Applied Eng. Res. 12 (2017) 8082–8091 [Google Scholar]
  19. Z. Stevic, D. Pamucar, A. Puska, P. Chatterjee, Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement Alternatives and Ranking according to COmpromise Solution (MARCOS), Comput. Ind. Eng. 140 (2020) 1–33 [Google Scholar]
  20. S. Tadic, M. Kilibarda, M. Kovac, S. Zecevic, The assessment of intermodal transport in countries of the Danube region, Int. J. Traffic Transp. Eng. 11 (2021) 375–391 [Google Scholar]
  21. S. Miomir, S. Zeljko, D.D. Kumar, S. Marko, P. Dragan, A New Fuzzy MARCOS Method for Road Traffic Risk Analysis, Mathematics 8 (2020) 1–17 [Google Scholar]
  22. A. Ulutas, D. Karabasevic, G. Popovic, D. Stanujkic, P.T. Nguyen, C. Karakoy, Development of a Novel Integrated CCSD-ITARA-MARCOS Decision-Making Approach for Stackers Selection in a Logistics System, Mathematics, 8 (2020) 1–15 [Google Scholar]
  23. Z. Stevic, N. Brkovic, A Novel Integrated FUCOM-MARCOS Model for Evaluation of Human Resources in a Transport Company, Logistics 4 (2020) 1–15 [CrossRef] [Google Scholar]
  24. H. Anysz, A. Nicał, Z. Stevic, M. Grzegorzewski, K. Sikora, Pareto optimal decisions in multi-criteria decision making explained with construction cost cases, Symmetry 13 (2021) 1–25 [Google Scholar]
  25. K. Maniya, M.G. Bhatt, A selection of material using a novel type decision-making method: preference selection index method, Mater. Design 31 (2010) 1785–1789 [CrossRef] [Google Scholar]
  26. J.R. Kiger, D.J. Annibale, A new method for group decision making and its application in medical trainee selection, Med. Educ. 50 (2016) 1045–1053 [CrossRef] [Google Scholar]
  27. N. Gunantara, A review of multi-objective optimization: methods and its applications, Cogent Eng. 5 (2018) 1–21 [Google Scholar]
  28. D.D. Trung, A combination method for multi-criteria decision making problem in turning process, Manuf. Rev. 8 (2021) 1–17 [Google Scholar]
  29. E. Triantaphyllou, Multi-criteria Decision Making Methods, Springer, US (2000) [Google Scholar]
  30. R.M. Dawes, B. Coorigan, Linear Models in Decision Malking, Psychol. Bull. 81 (1974) 95–106 [CrossRef] [Google Scholar]
  31. H.J. Einhorn, W. Mccoach, A Symble multiattribute utility procedure for evaluation, Behav. Sci. 22 (1997) 270–282 [Google Scholar]
  32. D.D. Trung, N.T. Nguyen, D.V. Duc, Study on multi-objective optimization of the turning process of en 10503 steel by combination of taguchi method and moora technique, EUREKA: Phys. Eng. 2 (2021) 52–65 [CrossRef] [MathSciNet] [Google Scholar]
  33. V.T.N. Uyen, N.H. Son, Improving accuracy of surface roughness model while turning 9XC steel using a Titanium Nitride-coated cutting tool with Johnson and Box-Cox transformation, AIMS Mater. Sci. 8 (2021) 1–17 [CrossRef] [Google Scholar]
  34. D.V.K. Gupta, V.S. Sharma, V.S.M. Dogra, Wear mechanisms of tin-coated cbn tool during finish hard turning of hot tool die steel, proceedings of the institution of mechanical engineers, part B: J. Eng. Manuf. 224 (2010) 553–566 [CrossRef] [Google Scholar]
  35. S.R. Das, A. Panda, D. Dhupal, Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during machining of hardened AISI 4340 steel with coated carbide insert, Mech. Adv. Mater. Modern Processes 3 (2017) 1–14 [CrossRef] [Google Scholar]
  36. V.R. Pathapalli, V.R. Basam, S.K. Gudimetta, M.R. Koppula, Optimization of machining parameters using WASPAS and MOORA, World J. Eng. 17 (2020) 237–246 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.