Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 2
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2021027
Published online 11 January 2022
  1. K. Pickering, Properties and Performance of Natural-Fibre Composites, CRC Press LLC, Boca Raton, 2008 [Google Scholar]
  2. C. Baley, F. Busnel, Y. Grohens, O. Sire, Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin, Compos. Part A: Appl. Sci. Manufactur. 37 (2006) 1626–1637 [CrossRef] [Google Scholar]
  3. D.B. Dittenber, H.V.S. GangaRao, Critical review of recent publications on use of natural composites in infrastructure, Composites Part A 43 (2012) 1419–1429 [CrossRef] [Google Scholar]
  4. R. Joffe, J. Andersons, L. Wallström, Strength and adhesion characteristics of elementary flax fibres with different surface treatments, Composites Part A 34 (2003) 603–612 [CrossRef] [Google Scholar]
  5. A.K. Bledzki, V.E. Sperber, O. Faruk, Natural and wood fibre reinforcement in polymers, Rapra Review Reports. 13 (2002) 1 [Google Scholar]
  6. J.L. Broge, Natural fibers in automotive components, Automot. Eng. Int. 108 (2000) 120 [Google Scholar]
  7. C. Clemons, Wood-plastic Composites in the United States: The interfacing of two Industries. , For. Prod. J. 52 (2002) 10–18 [Google Scholar]
  8. M. Karus, M. Kaup, S. Ortmann, Use of natural fibres in the German and Austrian automotive industry. Market survey, Status, analysis and trends. Nova-Institute GmbH, Hürth, Germany. (2002) [Google Scholar]
  9. P. Kandachar, R. Brouwer, Applications of Bio-Composites in Industrial Products. , Mater. Res. Soc. Symp. Proc. 702 (2002) 101–112 [Google Scholar]
  10. J. Biagiotti, D. Puglia, J.M. Kenny, A review on natural fibre-based composites − Part I: Structure, processing and properties of vegetable fibres, J. Natl. Fibers 1 (2004) 37–68 [CrossRef] [Google Scholar]
  11. H.L. Bos, K. Molenveld, W. Teunissen, A.M. Van Wingerde, D.R.V. Van Delft, Compressive behaviour of unidirectional flax fibre reinforced composites, J. Mater. Sci. 39 (2004) 2159–2168 [CrossRef] [Google Scholar]
  12. H.L. Bos, M. Van Den Oever, O. Peters, Tensile and compressive properties of flax fibres for natural fibre reinforced composites, J. Mater. Sci. 37 (2002) 1683–1692 [CrossRef] [Google Scholar]
  13. S. Chapple, R. Anandjiwala, Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review, J. Thermoplast. Compos. Mater. (2010) 871–893 [CrossRef] [Google Scholar]
  14. C. Gourier, A. Le Duigou, A. Bourmaud, C. Baley, Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles, Composites Part A 64 (2014) 159–166 [CrossRef] [Google Scholar]
  15. M. Hughes, J. Carpenter, C. Hill, Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites, J. Mater. Sci. 42 (2007) 2499–2511 [CrossRef] [Google Scholar]
  16. R. Joffe, J. Andersons, L. Wallström, Strength and adhesion characteristics of elementary flax fibres with different surface treatments, Composites Part A 34 (2003) 603–612 [CrossRef] [Google Scholar]
  17. P. Wambua, J. Ivens, I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63 (2003) 1259–1264 [CrossRef] [Google Scholar]
  18. L. Yan, N. Chouw, K. Jayaraman, Flax fibre and its composites − a review, Compos. Part B 56 (2014) 296–317 [CrossRef] [Google Scholar]
  19. M. Ramesh, K. Palanikumar, K.H. Reddy, Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites, Composites Part B 48 (2013) 1–9 [CrossRef] [Google Scholar]
  20. R. Shetty, R. Pai, A.B.V. Barboza, V. Pankaj Kumar Gandhi, Processing, mechanical charaterization and its tribological study of discontinously reinforced caryota urens fibre polyester composites, ARPN J. Eng. Appl. Sci. 13 (2018) 3920–3928 [Google Scholar]
  21. R. Shetty, R. Nayak, A.B.V. Barboza, Mechanical and machinability study of discontinuously reinforced sisal fiber polyester composites, Mater. Res. Express 6 (2019) 105370 [CrossRef] [Google Scholar]
  22. R. Shetty, R. Pai, S.S. Rao, V. Kamath, Machinability study on discontinuously reinforced aluminium composites (DRACs) using response surface methodology and Taguchi's design of experiments under dry cutting condition, Maejo Int. J. Sci. Technol. 2 (2008) 227–239 [Google Scholar]
  23. R. Shetty, R.B. Pai, S.S. Rao, R. Nayak, Taguchi's technique in machining of metal matrix composites', J. Br. Soc. Mech. Sci. Eng. 31 (2009) 12–20 [Google Scholar]
  24. G.D. Revankar, R. Shetty, S.S. Rao, V.N. Gaitonde, Selection of optimal process parameters in Ball Burnishing of Titanium Alloy, Mach. Sci. Technol. 18 (2014) 464–483 [CrossRef] [Google Scholar]
  25. A. Momber, R. Kovacevic, Principles of Abrasive Waterjet Machining. Springer-Verlag, London, 1998 [CrossRef] [Google Scholar]
  26. J.O. Obiko, F.M. Mwema, M. Oluwatosin Bodunrin, Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Tagucci method, Manufactur. Rev. 8 (2021) 5 [CrossRef] [EDP Sciences] [Google Scholar]
  27. J.O. Obiko, C. Obara, F.M. Mwema, J.N. Keraita, H. Shagwira, A multi-response optimization of the multi-directional forging process for aluminium 7075 alloy using grey-based taguchi method, SN Appl. Sci. Spri. Inter. 3 (2021) 1–20 [CrossRef] [Google Scholar]
  28. M. Poovalingam, Multi objective optimization of wear behaviour of Aluminum MMCs using Grey-Taguchi method, Manufacturing Rev. 7 (2020) 16 [CrossRef] [EDP Sciences] [Google Scholar]
  29. S.K. Choudhary, R.S. Jadoun, Optimization of EDM process parameters for MRR of Inconel 600 using Taguchi method, Int. J. Mech. Prod. Eng. Res. Dev. 10 (2020) 11481–11492 [Google Scholar]
  30. P.B. Patole, V.V. Kulkarni, Optimization of Process Parameters based on Surface Roughness and Cutting Force in MQL Turning of AISI 4340 using Nano Fluid, Mater. Today: Proc. 5 (2018) 104–112 [CrossRef] [Google Scholar]
  31. M. Chithirai Pon Selvan, N. Mohana Sundara Raju, Assessment of process parameters in abrasive waterjet cutting of stainless steel, Int. J. Adv. Eng. Technol. 1 (2011) 34–40 [Google Scholar]
  32. M. Chithirai Pon Selvan, N. Mohana Sundara Raju, Effects of process parameters on depth of cut in abrasive waterjet cutting of cast iron, Int. J. Sci. Eng. Res. 2 (2011) 1–5 [Google Scholar]
  33. P.P. Shirpurkar, S.R. Bobde, V.V. Patil, B.N. Kale, Optimization of turning process parameters by using tool inserts − a review, Int. J. Eng. Innov. Technol. 2 (2012) 216–223 [Google Scholar]
  34. R. Malagi Ravindra, S.R. Chougula, R. Shetty, Prediction of cutting force in turning of Ti-6Al-4V under minimum quantity lubrication (MQL) using response surface model and fuzzy logic model, Int. J. Mech. Product. Eng. Res. Dev. 8 (2018) 263–274 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.