Open Access
Manufacturing Rev.
Volume 9, 2022
Article Number 7
Number of page(s) 10
Published online 25 February 2022
  1. T. Sourmail, Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties, Prog. Mater. Sci. 50 (2005) 816–880 [CrossRef] [Google Scholar]
  2. J.E. May, M.F. de Oliveira, S.E. Kuri, New highly magnetic and oxidation-resistant FeCo-based alloys, Mater. Sci. Eng. A 361 (2003) 179–184 [CrossRef] [Google Scholar]
  3. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world, Science 362 (2018) [CrossRef] [Google Scholar]
  4. K. Kawahara, Effect of additive elements on cold workability in FeCo alloys, J. Mater. Sci. 18 (1983) 1709–1718 [CrossRef] [Google Scholar]
  5. B. Nabi et al., Effect of recrystallization and degree of order on the magnetic and mechanical properties of soft magnetic FeCo-2V alloy, Mater. Sci. Eng. A 578 (2013) 215–221 [CrossRef] [Google Scholar]
  6. Y. Sakka, T. Uchikoshi, E.J. Ozawa, Sintering characteristics of Fe and FeCo alloy ultrafine powders, Mater. Sci. 28 (1993) 203–217 [CrossRef] [Google Scholar]
  7. A. Silva, J.A. Lozano, R. Machado, J.A. Escobar, P.A.P. Wendhausen, Study of soft magnetic iron cobalt based alloys processed by powder injection molding, J. Magn. Magn. Mater. 320 (2008) [Google Scholar]
  8. A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, S.L. Evans, Synthesis and properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by spark plasma sintering, J. Mater. Sci. 51 (2016) 7624–7635 [CrossRef] [Google Scholar]
  9. A.B. Kustas et al., Controlling the extent of atomic ordering in intermetallic alloys through additive manufacturing, Addit. Manuf. 28 (2019) 772–780 [Google Scholar]
  10. C. Turk et al., Impact of the B2 ordering behavior on the mechanical properties of a FeCoMo alloy, Mater. Sci. Eng. A 662 (2016) 511–518 [CrossRef] [Google Scholar]
  11. S. Golchinvafa, S.M. Masoudpanah, M. Jazirehpour. Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders, J. Alloys Compd. 809 (2019) 151746 [CrossRef] [Google Scholar]
  12. G. Yao, S. Pan, J. Yuan, Z. Guan, X. Li, A novel process for manufacturing copper with size-controlled in-situ tungsten nanoparticles by casting, J. Mater. Process. Tech. 296 (2021) 117187 [CrossRef] [Google Scholar]
  13. R.S. Sundar, S.C. Deevi, Effect of heat-treatment on the room temperature ductility of an ordered intermetallic Fe-Co-V alloy, Mater. Sci. Eng. A 369 (2004) 164–169 [CrossRef] [Google Scholar]
  14. M.R. Kamali et al., Influence of microstructure and texture evolution on magnetic properties attained by annealing of a cold-rolled Fe-Co-10V semi-hard magnetic alloy, Mater. Charact. 169 (2020) 110591 [CrossRef] [Google Scholar]
  15. J.M. Loureiro, A.C. Batista, V.A. Khomchenko, B.F.O. Costa, G. Le Caër, Order-disorder phenomena from X-ray diffraction in FeCo alloys annealed and ground at high energy, Powder Diffr. 26 (2011) 267–272 [CrossRef] [Google Scholar]
  16. I. Ohnuma et al., Phase equilibria in the Fe-Co binary system, Acta Mater. 50 (2002) 379–393 [CrossRef] [Google Scholar]
  17. V. Mamedov, Spark plasma sintering as advanced PM sintering method, Powder Metall. 45 (2002) 322–328 [CrossRef] [Google Scholar]
  18. Z.Y. Hu et al., A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Des. 191 (2020) 108662 [CrossRef] [Google Scholar]
  19. W. Yamagishi, K. Hashimoto, T. Sato, S. Ogawa, Z. Henmi, Magnetic properties of Fe-Co alloys produced by powder metallurgy, IEEE Trans. Magn. 22 (1986) 641–643 [CrossRef] [Google Scholar]
  20. M.K. Mani, G. Viola, M.J. Reece, J.P. Hall, S.L. Evans, Mechanical and magnetic characterisation of SiC whisker reinforced Fe-Co alloy composites, Mater. Sci. Eng. A 592 (2014) 19–27 [CrossRef] [Google Scholar]
  21. M. Ze'ev Becker, N. Shomrat, Y. Tsur, Recent Advances in Mechanism Research and Methods for Electric-Field-Assisted Sintering of Ceramics, Adv. Mater. 30 (2018) 1–8 [Google Scholar]
  22. N.S. Weston, B. Thomas, M. Jackson, Processing metal powders via field assisted sintering technology (FAST): a critical review, Mater. Sci. Technol. (United Kingdom) 35 (2019) 1306–1328 [CrossRef] [Google Scholar]
  23. A. Du, Y. Yang, Y. Qin, G. Yang. Effects of Heating Rate and Sintering Temperature on 316L Stainless Steel Powders Sintered under Multiphysical Field Coupling, Mater Manuf Process, 28 (2013) 66–71 [Google Scholar]
  24. M. Wu, Y. Yang, G. Yang, D. Yin, Fabrication of TiO2 components by Fields Activated Sintering Technology (FAST), Ceram. Int. 43 (2017) 8075–8080 [CrossRef] [Google Scholar]
  25. X. Liang, T. Erenc-Sedziak, M. Kowalczyk, T. Kulik, B. Xu, Evaluation on the reliability of criterions for glass-forming ability of Fe(Co)-based bulk metallic glasses, J. Mater. Process. Technol. 204 (2008) 465–468 [CrossRef] [Google Scholar]
  26. Z. Han et al., P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery, J. Colloid Interface Sci. 590 (2021) 330–340 [CrossRef] [Google Scholar]
  27. J.M. MacLaren, T.C. Schulthess, W.H. Butler, R. Sutton, M. McHenry, Electronic structure, exchange interactions, and Curie temperature of FeCo, J. Appl. Phys. 85 (1999) 4833–4835 [CrossRef] [Google Scholar]
  28. Z. Tôkei, J. Bernardini, D.L. Beke, Grain-boundary diffusion in B2 intermetallic compounds: Effect of ordering on diffusion in the Fe3Al and FeCo compounds, Acta Mater. 47 (1999) 1371–1378 [CrossRef] [Google Scholar]
  29. M.A. Kazakova et al, Structural and electromagnetic properties of Fe2Co-multi-walled carbon nanotubes-polystyrene based composite, J. Alloys Compd. 844 (2020) 156107 [CrossRef] [Google Scholar]
  30. J. Mohapatra, M. Xing, J. Elkins, J.P. Liu, Hard and semi-hard magnetic materials based on cobalt and cobalt alloys, J. Alloys Compd. 824 (2020) 153874 [CrossRef] [Google Scholar]
  31. I. Arief, P.K. Mukhopadhyay, Preparation of spherical and cubic Fe55Co45 microstructures for studying the role of particle morphology in magnetorheological suspensions, J. Magn. Magn. Mater. 360 (2014) 104–108 [CrossRef] [Google Scholar]
  32. C. Garnero et al., Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material, Nano Lett. (2019) doi: 10.1021/acs.nanolett.8b05083 [Google Scholar]
  33. N. Liu et al., Grain refinement and grain coarsening of undercooled Fe-Co alloy, Mater. Charact. 57 (2006) 115–120 [CrossRef] [Google Scholar]
  34. H. Nitta et al., Grain boundary self-diffusion in directionally solidified equiatomic Fe-Co alloy, Mater. Sci. Eng. A 382 (2004) 250–256 [CrossRef] [Google Scholar]
  35. Z. Li et al., Effect of punching edge deformation on the magnetic properties of Fe49-Co49-V2 alloy, J. Magn. Magn. Mater. 510 (2020) 166978 [CrossRef] [Google Scholar]
  36. R.H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, J. Q. Xiao, Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys, J. Appl. Phys. 85 (1999) 6655–6659 [CrossRef] [Google Scholar]
  37. S. Hasani et al., Influence of annealing treatment on micro/macro-texture and texture dependent magnetic properties in cold rolled FeCo-7.15V alloy, J. Magn. Magn. Mater. 378 (2015) 253–260 [CrossRef] [Google Scholar]
  38. M. Wu, G. Yang, J. Liu, D. Yin, Y. Yang, Densification mechanism of copper micro-components prepared by the micro-forming fields activated sintering technology, J. Alloys Compd. 692 (2017) 434–439 [CrossRef] [Google Scholar]
  39. K. Huang, Y. Yang, Y. Qin, G. Yang, D. Yin, A new densification mechanism of copper powder sintered under an electrical field, Scr. Mater. 99 (2015) 85–88 [CrossRef] [Google Scholar]
  40. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions, Mater. Sci. Eng. A 394 (2005) 139–148 [CrossRef] [Google Scholar]
  41. W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, Z. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity, Mater. Sci. Eng. A 394 (2005) 132–138 [CrossRef] [Google Scholar]
  42. T. Massalsk, H. Okamota, P. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, New York, 1990) [Google Scholar]
  43. S. Fishman, R. Jeffery, Effect of High Pressure on Self-Diffusion in Concentrated FeCo Alloys, Phys Rev B. 12 (1971) 4424–4427 [CrossRef] [Google Scholar]
  44. O. Guillon et al., Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments, Adv. Eng. Mater. 16 (2014) 830–849 [CrossRef] [Google Scholar]
  45. S.H. Joo, K. Yubuta, H. Kato, Ordering kinetics of nanoporous FeCo during liquid metal dealloying and the development of nanofacets, Scr. Mater. 177 (2020) 38–43 [CrossRef] [Google Scholar]
  46. S. Sarkar, C. Bansal, Kinetic paths for B2 order in nanocrystalline FeCo-Mo: A Mössbauer spectroscopic study, Acta Mater. 49 (2001) 1789–1792 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.