Open Access
Manufacturing Rev.
Volume 9, 2022
Article Number 35
Number of page(s) 37
Published online 25 November 2022
  1. S. Ramakrishna, T.C. Khong, T.K. Leong, Smart manufacturing, Proc. Manuf. 12 (2017) 128–131 [Google Scholar]
  2. B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez et al., Metal additive manufacturing in aerospace: a review, Mater. Des. 209 (2021) 110008 [CrossRef] [Google Scholar]
  3. M. Attaran, The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing, Bus. Horiz. 60 (2017) 677–688 [CrossRef] [Google Scholar]
  4. B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan et al., Making sense of 3-D printing: creating a map of additive manufacturing products and services, Addit. Manuf. 1 (2014) 64–76 [Google Scholar]
  5. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371–392 [CrossRef] [Google Scholar]
  6. K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN Mech. Eng. 2012 (2012) 1–10 [Google Scholar]
  7. H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Technol. 83 (2016) 389–405 [Google Scholar]
  8. A. Ahmed, A. Azam, M. Mahmood, A. Bhutta, F. Ahmad, R. Aslam et al., Discovering the technology evolution pathways for 3D printing (3DP) using bibliometric investigation and emerging applications of 3D printing, Clean Environ. Syst. 3 (2021) 1–18 [Google Scholar]
  9. C.K. Chua, Publication trends in 3D bioprinting and 3D food printing, Int. J. Bioprinting 6 (2020) 1–3 [Google Scholar]
  10. R. Kumar, M. Kumar, J.S. Chohan, The role of additive manufacturing for biomedical applications: a critical review, J. Manuf. Process. 64 (2021) 828–850 [CrossRef] [Google Scholar]
  11. S.-J. Yoo, O. Thabit, E.K. Kim, H. Ide, D. Yim, A. Dragulescu et al., 3D printing in medicine of congenital heart diseases, 3D Print Med. 2 (2016) 1–12 [CrossRef] [Google Scholar]
  12. A.A. Giannopoulos, M.L. Steigner, E. George, M. Barile, A.R. Hunsaker, F.J. Rybicki et al., Cardiothoracic applications of 3-dimensional printing, J. Thorac. Imag. 31 (2016) 253–272 [CrossRef] [Google Scholar]
  13. M. Qasim, F. Haq, M.H. Kang, J.H. Kim, 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration, Int. J. Nanomed. 14 (2019) 1311–1333 [CrossRef] [Google Scholar]
  14. D.B. Kolesky, K.A. Homan, M.A. Skylar-Scott, J.A. Lewis, Three-dimensional bioprinting of thick vascularized tissues, Proc. Natl. Acad. Sci. U S A 113 (2016) 3179–3184 [CrossRef] [Google Scholar]
  15. J.P. Costello, L.J. Olivieri, L. Su, A. Krieger, F. Alfares, O. Thabit et al., Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians, Cong. Heart Dis. 10 (2015) 185–190 [CrossRef] [Google Scholar]
  16. I. Lau, Z. Sun, Three-dimensional printing in congenital heart disease: a systematic review, J. Med. Radiat. Sci. 65 (2018) 226–236 [CrossRef] [Google Scholar]
  17. H. Takahashi, T. Okano, Cell sheet-based tissue engineering for organizing anisotropic tissue constructs produced using microfabricated thermoresponsive substrates, Adv. Healthcare Mater. 4 (2015) 2388–2407 [CrossRef] [Google Scholar]
  18. V. Lee, G. Singh, J.P. Trasatti, C. Bjornsson, X. Xu, T.N. Tran et al., Design and fabrication of human skin by three-dimensional bioprinting, Tissue Eng. Part C Methods 20 (2014) 473–484 [CrossRef] [Google Scholar]
  19. W.L. Ng, S. Wang, W.Y. Yeong, M.W. Naing, Skin bioprinting: impending reality or fantasy? Trends Biotechnol. 34 (2016) 689–699 [CrossRef] [Google Scholar]
  20. D. Huh, G.A. Hamilton, D.E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell. Biol. 21 (2011) 745–754 [CrossRef] [Google Scholar]
  21. D.B. Kolesky, R.L. Truby, A.S. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs, Adv. Mater. 26 (2014) 3124–3330 [CrossRef] [Google Scholar]
  22. Y. Zhao, R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro, Biofabrication 6 (2014) 035001 [CrossRef] [Google Scholar]
  23. A. Skardal, M. Devarasetty, H.W. Kang, I. Mead, C. Bishop, T. Shupe et al., A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs, Acta Biomater. 25 (2015) 24–34 [CrossRef] [Google Scholar]
  24. J. Jang, H. Park, S. Kim, H. Kim, J. Park, S. Na et al., 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair, Biomaterials 112 (2017) 264–274 [CrossRef] [Google Scholar]
  25. W. Peng, D. Unutmaz, I.T. Ozbolat, Bioprinting towards physiologically relevant tissue models for pharmaceutics, Trends Biotechnol. 34 (2016) 722–732. [CrossRef] [Google Scholar]
  26. S. Knowlton, S. Tasoglu, A bioprinted liver-on-a-chip for drug screening applications, Trends Biotechnol. 34 (2016) 681–682 [CrossRef] [Google Scholar]
  27. J. Will, R. Melcher, C. Treul, N. Travitzky, U. Kneser, E. Polykandriotis et al., Porous ceramic bone scaffolds for vascularized bone tissue regeneration, J. Mater. Sci. Mater. Med. 19 (2008) 2781–2790 [CrossRef] [Google Scholar]
  28. Y. Zhou, The recent development and applications of fluidic channels by 3D printing, J. Biomed. Sci. 24 (2017) 1–22 [CrossRef] [Google Scholar]
  29. P. Datta, B. Ayan, I.T. Ozbolat, Bioprinting for vascular and vascularized tissue biofabrication, Acta Biomater. 51 (2017) 1–20 [CrossRef] [Google Scholar]
  30. J.J. Kim, L. Hou, N.F. Huang, Vascularization of three-dimensional engineered tissues for regenerative medicine applications, Acta Biomater. 41 (2016) 17–26 [CrossRef] [Google Scholar]
  31. A.J. Capel, R.P. Rimington, J.W. Fleming, D.J. Player, L.A. Baker, M.C. Turner et al., Scalable 3D printed molds for human tissue engineered skeletal muscle, Front. Bioeng. Biotechnol. 7 (2019) 1–13 [CrossRef] [Google Scholar]
  32. S. Ji, M. Guvendiren, Recent advances in bioink design for 3D bioprinting of tissues and organs, Front. Bioeng. Biotechnol. 5 (2017) 1–8 [Google Scholar]
  33. Y. Lv, B. Wang, G. Liu, Y. Tang, E. Lu, K. Xie et al., Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review, Front. Bioeng. Biotechnol. 9 (2021) 1–16 [Google Scholar]
  34. E. Edelmers, D. Kazoka, M. Pilmane, Creation of anatomically correct and optimized for 3d printing human bones models, Appl. Syst. Innov. 4 (2021) 1–14 [Google Scholar]
  35. F.E. Freeman, R. Burdis, D.J. Kelly, Printing new bones: from print-and-implant devices to bioprinted bone organ precursors, Trends Mol. Med. 27 (2021) 700–711 [CrossRef] [Google Scholar]
  36. Y. AbouHashem, M. Dayal, S. Savanah, G. Štrkalj, The application of 3D printing in anatomy education, Med. Educ. Online 20 (2015) [Google Scholar]
  37. M. Bartikian, A. Ferreira, A. Gonçalves-Ferreira, L.L. Neto, 3D printing anatomical models of head bones, Surg. Radiol. Anat. 41 (2019) 1205–1209 [CrossRef] [Google Scholar]
  38. D. de Alcântara Leite dos Reis, B.L.R. Gouveia, J.C.R. Júnior, A.C. de Assis Neto, Comparative assessment of anatomical details of thoracic limb bones of a horse to that of models produced via scanning and 3D printing, 3D Print. Med. 5 (2019) 1–10 [CrossRef] [Google Scholar]
  39. N. Okkalidis, G. Marinakis, Technical Note: Accurate replication of soft and bone tissues with 3D printing, Med. Phys. 47 (2020) 2206–2211 [CrossRef] [Google Scholar]
  40. S. Cooke, K. Ahmadi, S. Willerth, R. Herring, Metal additive manufacturing: Technology, metallurgy and modelling, J. Manuf. Process. 57 (2020) 978–1003 [CrossRef] [Google Scholar]
  41. S. Bhat, A. Kumar, Biomaterials and bioengineering tomorrow’s healthcare, Biomatter 3 (2013) e24717-1-e24717-12 [CrossRef] [Google Scholar]
  42. E. Fantino, I. Roppolo, D. Zhang, J. Xiao, A. Chiappone, 3D Printing/interfacial polymerization coupling for the fabrication of conductive hydrogel, Macromol. Mater. Eng. 1700356 (2018) 1–8 [Google Scholar]
  43. L.E. Murr, lar metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting, J. Mech. Behav. Biomed. Mater. 76 (2017) 164–77 [CrossRef] [Google Scholar]
  44. P.R. Armijo, N.W. Markin, S. Nguyen, D.H. Ho, T.S.H. Ms, S.J. Lisco et al., 3D printing of face shields to meet the immediate need for PPE in an anesthesiology department during the COVID-19 pandemic, Am. J. Infect. Control 49 (2021) 302–308 [CrossRef] [Google Scholar]
  45. Y.W.D. Tay, B. Panda, S.C. Paul, N.A. Noor Mohamed, M.J. Tan, K.F. Leong, 3D printing trends in building and construction industry: a review, Virtual Phys. Prototyp. 12 (2017) 261–276 [CrossRef] [Google Scholar]
  46. S. Lim, R.A. Buswell, T.T. Le, S.A. Austin, A.G.F. Gibb, T. Thorpe, Developments in construction-scale additive manufacturing processes, Autom. Constr. 21 (2012) 262–268 [CrossRef] [Google Scholar]
  47. I. Perkins, M. Skitmore, Three-dimensional printing in the construction industry: a review, Int. J. Constr. Manag. 15 (2015) 1–9 [Google Scholar]
  48. M. Marzouk, H. Elsaay, A.A.E. Othman, Analysing BIM implementation in the Egyptian construction industry, Eng. Constr. Archit. Manag. (2021) [Google Scholar]
  49. S. Lim, R.A. Buswell, P.J. Valentine, D. Piker, S.A. Austin, X. De Kestelier, Modelling curved-layered printing paths for fabricating large-scale construction components, Addit. Manuf. 12 (2016) 216–230 [Google Scholar]
  50. B. Khoshnevis, Automated construction by contour crafting – related robotics and information technologies, Autom. Constr. 13 (2004) 5–19 [CrossRef] [Google Scholar]
  51. A. Kanyilmaz, A.G. Demir, M. Chierici, F. Berto, L. Gardner, S.Y. Kandukuri et al., Role of metal 3D printing to increase quality and resource-efficiency in the construction sector, Addit. Manuf. (2021) 102541 [Google Scholar]
  52. G. Bai, L. Wang, F. Wang, G. Ma, In-process reinforcing method: dual 3D printing procedure for ultra-high performance concrete reinforced cementitious composites, Mater. Lett. 304 (2021) 130594 [CrossRef] [Google Scholar]
  53. P. Bedarf, A. Dutto, M. Zanini, B. Dillenburger, Automation in construction foam 3D printing for construction: a review of applications, materials, and processes, Autom. Constr. 130 (2021) 103861 [CrossRef] [Google Scholar]
  54. W.E. Frazier, Metal additive manufacturing: a review, J. Mater. Eng. Perform. 23 (2014) 1917–1928 [CrossRef] [Google Scholar]
  55. C. Körner, Additive manufacturing of metallic components by selective electron beam melting – a review, Int. Mater. Rev. 61 (2016) 361–377 [CrossRef] [Google Scholar]
  56. Manfucturing Technology Centre, Design for additive manufacturing: additive manufactured electric motor 2019. (accessed October 11, 2021) [Google Scholar]
  57. G. Ding, R. He, K. Zhang, N. Zhou, H. Xu, Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror, Ceram. Int. 46 (2020) 18785–18790 [CrossRef] [Google Scholar]
  58. C.W.J. Wee, K.Q. Le, Q. Lu, C.H. Wong, An overview of 3D printing in the manufacturing, aerospace, and automotive Industries, IEEE Potentials 35 (2016) 18–22 [Google Scholar]
  59. B. Garg, N. Mehta, Current status of 3D printing in spine surgery, J. Clin. Orthop. Trauma 9 (2018) 218–225 [CrossRef] [Google Scholar]
  60. J. Xiao, G. Ji, Y. Zhang, G. Ma, V. Mechtcherine, Large-scale 3D printing concrete technology : current status and future opportunities, Cem. Concr. Compos. 122 (2021) 104115 [CrossRef] [Google Scholar]
  61. Ramundo, L. Otcu, B. Gulsen, S. Terzi, Sustainability model for 3D food printing adoption, IEEE Int. Conf. Eng. Technol. Innov. (2020) 1–8 [Google Scholar]
  62. T. Kermavnar, A. Shannon, L.W. O’Sullivan, The application of additive manufacturing/3D printing in ergonomic aspects of product design: a systematic review, Appl. Ergon. (2021) 97 [Google Scholar]
  63. P. Stavropoulos, P. Foteinopoulos, Modelling of additive manufacturing processes: a review and classification, Manuf. Rev. 5 (2018) 1–26 [Google Scholar]
  64. Y. Wang, A. Ahmed, A. Azam, D. Bing, Z. Shan, Z. Zhang et al., Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: the knowledge evolution of 3D printing, J. Manuf. Syst. 60 (2021) 709–733 [CrossRef] [Google Scholar]
  65. European Patent Office. Patents and additive manufacturing (2020) [Google Scholar]
  66. ISO/ASTM, Standard Terminology for Additive Manufacturing Technologies (ASTM 52900) (2015) [Google Scholar]
  67. I. Gibson, D. Rosen, S. Brent, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd edn. Springer Science+Business Media, New York (2015) [Google Scholar]
  68. Y. Bai, G. Wagner, C.B. Williams, Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals, J. Manuf. Sci. Eng. 139 (2017) 1–6 [Google Scholar]
  69. O.E. Garzon, L.J. Alves, R.J. Neto, Study of the viability of manufacturing ceramic moulds by additive manufacturing for rapid casting, Ciência Tecnol. Dos. Mater. 29 (2017) e275–e280 [CrossRef] [Google Scholar]
  70. S.M. Gaytan, M.A. Cadena, H. Karim, D. Del, Y. Lin, D. Espalin, Fabrication of barium titanate by binder jetting additive manufacturing technology, Ceram. Int. 41 (2015) 6610–6619 [CrossRef] [Google Scholar]
  71. I. Zein, D.W. Hutmacher, K. Cheng, S. Hin, Fused deposition modeling of novel scaffold architectures for tissue engineering applications, Biomaterials 23 (2002) 1169–1185 [CrossRef] [Google Scholar]
  72. H. Klippstein, A. Diaz, D.C. Sanchez, H. Hassanin, Y. Zweiri, Fused deposition modeling for Unmanned Aerial Vehicles (UAVs): a review, Adv. Eng. Mater. 1700552 (2017) 1–17 [Google Scholar]
  73. N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Front. Mech. Eng. 8 (2013) 215–243 [CrossRef] [Google Scholar]
  74. G.M. Karthik, H.S. Kim, Heterogeneous aspects of additive manufactured metallic parts: a review, Vol. 27 (The Korean Institute of Metals and Materials, 2021) [Google Scholar]
  75. S.A. Adekanye, R.M. Mahamood, E.T. Akinlabi, M.G. Owolabi, Additive manufacturing: the future of manufacturing, Mater. Technol. 51 (2017) 709–715 [Google Scholar]
  76. H. Windsheimer, N. Travitzky, A. Hofenauer, P. Greil, Laminated object manufacturing of preceramic-paper-derived Si-SiC composites, Adv. Mater. 19 (2007) 4515–4519 [CrossRef] [Google Scholar]
  77. L. Weisensel, N. Travitzky, H. Sieber, P. Greil, Laminated object manufacturing (LOM) of SiSiC composites, Adv. Eng. Mater. (2004) 899–903 [CrossRef] [Google Scholar]
  78. M.A. Wilson, K. Recknagle, K. Brooks, Design and development of a low-cost, high temperature silicon carbide micro-channel recuperator, Proc. GT2005 ASME Turbo Expo 2005 Power Land, Sea Air, Nevada, USA (2005) p. 1–6 [Google Scholar]
  79. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh et al., Review of selective laser melting: Materials and applications, Appl. Phys. Rev. (2015) 2 [Google Scholar]
  80. M. Van Elsen, F. Al-bender, J. Kruth, Application of dimensional analysis to selective laser melting, Rapid Prototyp. J. 1 (2008) 15–22 [CrossRef] [Google Scholar]
  81. M. Brandt, S. Sun, M. Leary, S. Feih, J. Elambasseril, Q. Liu, High-value SLM aerospace components: from design to manufacture, Adv. Mater. Res. 633 (2013) 135–147 [CrossRef] [Google Scholar]
  82. F.P.W. Melchels, J. Feijen, D.W. Grijpma, Biomaterials: a review on stereolithography and its applications in biomedical engineering, Biomaterials 31 (2010) 6121–6130 [CrossRef] [Google Scholar]
  83. V.E. Beal, C.H. Ahrens, P.A. Wendhausen, The use of stereolithography rapid tools in the manufacturing of metal powder injection molding parts, J. Brazilian Soc. Mech. Sci. Eng. XXVI (2004) 40–46 [CrossRef] [Google Scholar]
  84. P. Marchal, A. Gigante, S. Corbel, Stereolithography fabrication and characterization of syntactic foams containing hollow glass microspheres, Russ. Chem. Rev. 78 (2009) 375–386 [CrossRef] [Google Scholar]
  85. F. Scalera, C.E. Corcione, F. Montagna, A. Sannino, A. Maffezzoli, Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering, Ceram. Int. 40 (2014) 15455–15462 [CrossRef] [Google Scholar]
  86. J. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials, Appl. Mater. Today 7 (2017) 120–133 [CrossRef] [Google Scholar]
  87. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des. 31 (2010) 287–295 [Google Scholar]
  88. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today 21 (2018) 22–37 [CrossRef] [Google Scholar]
  89. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. Part B Eng. 143 (2018) 172–196 [CrossRef] [Google Scholar]
  90. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective, Compos. Part B: Eng. 110 (2017) 442–458 [CrossRef] [Google Scholar]
  91. J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Compos. Part B: Eng. 117 (2017) 138–149 [CrossRef] [Google Scholar]
  92. H. Qu, Additive manufacturing for bone tissue engineering scaffolds, Mater. Today Commun. 24 (2020) 101024 [CrossRef] [Google Scholar]
  93. S. Maharubin, Y. Hu, D. Sooriyaarachchi, W. Cong, G.Z. Tan, Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys, Mater. Sci. Eng. C 105 (2019) 110059 [CrossRef] [Google Scholar]
  94. A. Bandyopadhyay, B. Krishna, W. Xue, S. Bose, Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants, J. Mater. Sci. Mater. Med. (2009) S29–S39 [CrossRef] [Google Scholar]
  95. D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Material-structure-performance integrated laser-metal additive manufacturing, Science (80-) 372 (2021) 1–15 [Google Scholar]
  96. M. Javaid, A. Haleem, 3D printed tissue and organ using additive manufacturing: an overview, Clin. Epidemiol. Glob. Heal. 8 (2020) 586–594 [CrossRef] [Google Scholar]
  97. C. Igbelina, The synergistic integration of mass customization, parametric design and additive manufacturing: a case of personalised footwear. The University of Texas at San Antonio (2018) [Google Scholar]
  98. D. Wu, M.J. Greer, D.W. Rosen, D. Schaefer, Cloud manufacturing: drivers, current status, and future trends, in ASME 2013 Int. Manuf. Sci. Eng. Conf. Collocated with 41st North Am. Manuf. Res. Conf. MSEC 2013, vol. 2 (2013), pp. 1–11 [Google Scholar]
  99. E. Rauch, M. Unterhofer, P. Dallasega, Industry sector analysis for the application of additive manufacturing in smart and distributed manufacturing systems, Manuf. Lett. 15 (2018) 126–131 [CrossRef] [Google Scholar]
  100. T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, J.O. Milewski, Metallurgy, mechanistic models and machine learning in metal printing, Nat. Rev. Mater. 6 (2021) 48–68 [CrossRef] [Google Scholar]
  101. H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De et al., Mechanistic models for additive manufacturing of metallic components, Prog. Mater. Sci. 116 (2021) 100703 [CrossRef] [Google Scholar]
  102. X. Lin, K. Zhu, J.Y.H. Fuh, X. Duan, Metal-based additive manufacturing condition monitoring methods: from measurement to control, ISA Trans. 120 (2022) 147–166 [CrossRef] [Google Scholar]
  103. B.D. Hettiarachchi, M. Brandenburg, S. Seuring, Connecting additive manufacturing to circular economy implementation strategies: links, contingencies and causal loops, Int. J. Prod. Econ. 246 (2022) 108414 [CrossRef] [Google Scholar]
  104. A. Mostafaei, C. Zhao, Y. He, S. Reza Ghiaasiaan, B. Shi, S. Shao et al., Defects and anomalies in powder bed fusion metal additive manufacturing, Curr. Opin. Solid State Mater. Sci. 26 (2022) 100974 [CrossRef] [Google Scholar]
  105. S. Zhu, C.W. Lou, S. Zhang, N. Wang, J. Li, Y. Feng et al., Clean surface additive manufacturing of aramid paper-based electrically heated devices for medical therapy application, Surf. Interfaces 29 (2022) 101689 [CrossRef] [Google Scholar]
  106. V.V. Popov, E.V. Kudryavtseva, N.K. Katiyar, A. Shishkin, S.I. Stepanov, S. Goel, Industry 4.0 and digitalisation in healthcare, Materials (Basel) 15 (2022) 1–21 [Google Scholar]
  107. E. Kudryavtseva, V. Popov, G. Muller-Kamskii, E. Zakurinova, V. Kovalev, Advantages of 3D printing for gynecology and obstetrics: brief review of applications, technologies, and prospects, in Proc. 2020 IEEE 10th Int. Conf. "Nanomaterials Appl. Prop. N. 2020 (2020), pp. 9–13 [Google Scholar]
  108. N. Divakaran, J.P. Das, P.V. Ak, S. Mohanty, A. Ramadoss, S.K. Nayak, Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices, J. Manuf. Syst. 62 (2022) 477–502 [CrossRef] [Google Scholar]
  109. J. Plocher, A. Panesar, Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures, Mater. Des. 183 (2019) 108164 [CrossRef] [Google Scholar]
  110. A. Katz-Demyanetz, V.V. Popov, A. Kovalevsky, D. Safranchik, A. Koptyug, Powder-bed additive manufacturing for aerospace application: techniques, metallic and metal/ceramic composite materials and trends, Manuf. Rev. 6 (2019) 1–13 [Google Scholar]
  111. M.P. Browne, E. Redondo, M. Pumera, 3D printing for electrochemical energy applications, Chem. Rev. 120 (2020) 2783–2910 [CrossRef] [Google Scholar]
  112. K. Fu, Y. Yao, J. Dai, L. Hu, Progress in 3D printing of carbon materials for energy-related applications, Adv. Mater. (2017) 29 [Google Scholar]
  113. M. Javaid, A. Haleem, Additive manufacturing applications in orthopaedics: a review, J. Clin. Orthop. Trauma 9 (2018) 202–226 [CrossRef] [Google Scholar]
  114. R. Vaishya, V. Vijay, A. Vaish, A.K. Agarwal, Computed tomography based 3D printed patient specific blocks for total knee replacement, J. Clin. Orthop. Trauma 9 (2018) 254–259 [CrossRef] [Google Scholar]
  115. J. Ni, H. Ling, S. Zhang, Z. Wang, Z. Peng, C. Benyshek et al., Three-dimensional printing of metals for biomedical applications, Mater. Today Biol. 3 (2019) 100024 [CrossRef] [Google Scholar]
  116. K. Moghadasi, M.M.S. Isa, M.A. Ariffin, M.M.Z. Jamil, S. Raja, B. Wu et al., A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties, J. Mater. Res. Technol. 17 (2022) 1054–1121 [CrossRef] [Google Scholar]
  117. H. Lal, M.K. Patralekh, 3D printing and its applications in orthopaedic trauma: a technological marvel, J. Clin. Orthop. Trauma 9 (2018) 260–268 [CrossRef] [Google Scholar]
  118. S. Attarilar, M. Ebrahimi, F. Djavanroodi, Y. Fu, L. Wang, J. Yang, 3D printing technologies in metallic implants: a thematic review on the techniques and procedures, Int. J. Bioprinting 7 (2021) 21–46 [CrossRef] [Google Scholar]
  119. F. Bertacchini, E. Bilotta, F. Demarco, P. Pantano, C. Scuro, Multi-objective optimization and rapid prototyping for jewelry industry: methodologies and case studies, Int. J. Adv. Manuf. Technol. 112 (2021) 2943–2959 [CrossRef] [Google Scholar]
  120. ASM International, Volume 24 - Additive Manufacturing Processes. vol. 24 (2020) [Google Scholar]
  121. N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir, 3D printing of personalized thick and perfusable cardiac patches and hearts, Adv. Sci. 6 (2019) 1900344 [CrossRef] [Google Scholar]
  122. A. Al-Ahmari, E.A. Nasr, K. Moiduddin, M. Alkindi, A. Kamrani, Patient specific mandibular implant for maxillofacial surgery using additive manufacturing, in IEOM 2015 - 5th Int Conf Ind Eng Oper Manag Proceeding (2015) [Google Scholar]
  123. A. du Plessis, I. Yadroitsava, I. Yadroitsev, Ti6Al4V lightweight lattice structures manufactured by laser powder bed fusion for load-bearing applications, Opt. Laser Technol. 108 (2018) 521–528 [CrossRef] [Google Scholar]
  124. M. Abramson, T. Hilton, K. Hosking, N. Campbell, R. Dey, G. McCollum, Total Talar replacements short-medium term case series, South Africa 2019, J. Foot Ankle Surg. 60 (2021) 182–186 [CrossRef] [Google Scholar]
  125. H.M.A. Kolken, A.F. Garcia, A. Du Plessis, C. Rans, M.J. Mirzaali, A.A. Zadpoor, Fatigue performance of auxetic meta-biomaterials, Acta Biomater. 126 (2021) 511–523 [CrossRef] [Google Scholar]
  126. N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong et al., Progress in additive manufacturing on new materials: a review, J. Mater. Sci. Technol. 35 (2019) 242–269 [CrossRef] [Google Scholar]
  127. A. Bandyopadhyay, Y. Zhang, S. Bose, Recent developments in metal additive manufacturing, Curr. Opin. Chem. Eng. 28 (2020) 96–104 [CrossRef] [Google Scholar]
  128. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164 [Google Scholar]
  129. R.E. Ghomi, F. Khosravi, R.E. Neisiany, S. Singh, S. Ramakrishna, Future of additive manufacturing in healthcare, Curr. Opin. Biomed. Eng. 17 (2021) 100255 [CrossRef] [Google Scholar]
  130. N. El-Sayed, L. Vaut, M. Schneider, Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery, Eur. J. Pharm. Biopharm. 154 (2020) 166–174 [CrossRef] [Google Scholar]
  131. S. Hassanajili, A. Karami-Pour, A. Oryan, T. Talaei-Khozani, Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering, Mater. Sci. Eng. C 104 (2019) 109960 [CrossRef] [Google Scholar]
  132. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing, Mater. Today 16 (2013) 496–504 [CrossRef] [Google Scholar]
  133. B.I. Oladapo, S.A. Zahedi, A.O.M. Adeoye, 3D printing of bone scaffolds with hybrid biomaterials, Compos. Part B: Eng. 158 (2019) 428–436 [CrossRef] [Google Scholar]
  134. A. Haleem, M. Javaid, Role of CT and MRI in the design and development of orthopaedic model using additive manufacturing, J. Clin. Orthop. Trauma 9 (2018) 213–217 [CrossRef] [Google Scholar]
  135. E. Dogan, A. Bhusal, B. Cecen, A.K. Miri, 3D printing metamaterials towards tissue engineering, Appl. Mater. Today 20 (2020) 100752 [CrossRef] [Google Scholar]
  136. M.M. Stanton, J. Samitier, S. Sánchez, Bioprinting of 3D hydrogels, Lab Chip 15 (2015) 3111–3115 [CrossRef] [Google Scholar]
  137. M.W. Laschke, M.D. Menger, Life is 3D: boosting spheroid function for tissue engineering, Trends Biotechnol. 35 (2017) 133–144 [CrossRef] [Google Scholar]
  138. A. Haleem, M. Javaid, 3D scanning applications in medical field: a literature-based review, Clin. Epidemiol. Glob. Health 7 (2019) 199–210 [CrossRef] [Google Scholar]
  139. F. Croisier, C. Jér⊚me, Chitosan-based biomaterials for tissue engineering, Eur. Polym. J. 49 (2013) 780–792 [CrossRef] [Google Scholar]
  140. P. Gupta, B.B. Mandal, Silk biomaterials for vascular tissue engineering applications, Acta Biomater 134 (2021) 79–106 [CrossRef] [Google Scholar]
  141. K. Lau, A. Waterhouse, B. Akhavan, L. Gao, H.N. Kim, F. Tang et al., Biomimetic silk biomaterials: Perlecan-functionalized silk fibroin for use in blood-contacting devices, Acta Biomater 132 (2021) 162–175 [CrossRef] [Google Scholar]
  142. T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Scr. Mater. 172 (2019) 83–87 [CrossRef] [Google Scholar]
  143. S.K. Jaganathan, E. Supriyanto, S. Murugesan, A. Balaji, M.K. Asokan, Biomaterials in cardiovascular research: applications and clinical implications, Biomed. Res. Int. (2014) 1–11 [Google Scholar]
  144. A.F. Schilling, W. Linhart, S. Filke, M. Gebauer, T. Schinke, J.M. Rueger et al., Resorbability of bone substitute biomaterials by human osteoclasts, Biomaterials 25 (2004) 3963–3972 [CrossRef] [Google Scholar]
  145. Y. Zhan, C. Li, W. Jiang, β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements, Mater. Sci. Eng. C 32 (2012) 1664–1668 [CrossRef] [Google Scholar]
  146. N. Mitsuo, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A 243 (1998) 231–236 [CrossRef] [Google Scholar]
  147. S. Knowlton, B. Yenilmez, S. Tasoglu, Towards single-step biofabrication of organs on a chip via 3D printing, Trends Biotechnol. 34 (2016) 685–688 [CrossRef] [Google Scholar]
  148. F.B. Coulter, M. Schaffner, J.A. Faber, A. Rafsanjani, R. Smith, H. Appa et al., Bioinspired heart valve prosthesis made by silicone additive manufacturing, Matter 1 (2019) 266–279 [CrossRef] [Google Scholar]
  149. A.H. Hussein, M.A.H. Gepreel, M.K. Gouda, A.M. Hefnawy, S.H. Kandil, Biocompatibility of new Ti-Nb-Ta base alloys, Mater. Sci. Eng. C 61 (2016) 574–578 [CrossRef] [Google Scholar]
  150. M.A. Gepreel, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, J. Mech. Behav. Biomed. Mater. 20 (2013) 407–415 [CrossRef] [Google Scholar]
  151. M. Akmal, A. Hussain, M. Afzal, Y.I. Lee, H.J. Ryu, Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- in vivo biocompatibility examination, J. Mater. Sci. Technol. 78 (2021) 183–191 [CrossRef] [Google Scholar]
  152. T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel et al., Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scr. Mater. 194 (2021) 113658 [CrossRef] [Google Scholar]
  153. Y.J. Park, Y.H. Song, J.H. An, H.J. Song, K.J. Anusavice, Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials, J. Dent. 41 (2013) 1251–1258 [CrossRef] [Google Scholar]
  154. D. Jao, Y. Xue, J. Medina, X. Hu, Protein-based drug-delivery materials, Materials (Basel) 10 (2017) 1–24 [Google Scholar]
  155. C.K. Chen, P.K. Huang, W.C. Law, C.H. Chu, N.T. Chen, L.W. Lo, Biodegradable polymers for gene-delivery applications, Int. J. Nanomedicine 15 (2020) 2131–2150 [CrossRef] [Google Scholar]
  156. V.K. Bommala, M.G. Krishna, C.T. Rao, Magnesium matrix composites for biomedical applications: a review, J. Magnes. Alloy 7 (2019) 72–79 [CrossRef] [Google Scholar]
  157. P. Jana, M. Shyam, S. Singh, V. Jayaprakash, A. Dev, Biodegradable polymers in drug delivery and oral vaccination, Eur. Polym. J. 142 (2021) 110155 [CrossRef] [Google Scholar]
  158. J.N. Kizhakkedathu, E.M. Conway, Biomaterial and cellular implants:foreign surfaces where immunity and coagulation meet, Blood (2021) [Google Scholar]
  159. J.E. Berger, A.M. Jorge, G.H. Asato, V. Roche, Formation of self-ordered oxide nanotubes layer on the equiatomic TiNbZrHfTa high entropy alloy and bioactivation procedure, J. Alloys Compd. 865 (2021) 158837 [CrossRef] [Google Scholar]
  160. V.V. Ramalingam, P. Ramasamy, K.M. Das, G. Myilsamy, Research and development in magnesium alloys for industrial and biomedical applications: a review, Met. Mater. Int. 26 (2020) 409–430 [CrossRef] [Google Scholar]
  161. L. Bolzoni, T. Weissgaerber, B. Kieback, E.M. Ruiz-Navas, E. Gordo, Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder, J. Mech. Behav. Biomed. Mater. 20 (2013) 149–161 [CrossRef] [Google Scholar]
  162. Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R Reports 77 (2014) 1–34 [CrossRef] [Google Scholar]
  163. L. Tan, X. Yu, P. Wan, K. Yang, Biodegradable materials for bone repairs: a review, J. Mater. Sci. Technol. 29 (2013) 503–513 [CrossRef] [MathSciNet] [Google Scholar]
  164. F. Baino, G. Novajra, V. Miguez- Pacheco, A.R. Boccaccini, C. Vitale-Brovarone, Bioactive glasses: special applications outside the skeletal system, J. Non Cryst. Solids 432 (2016) 15–30 [CrossRef] [Google Scholar]
  165. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials, Nat. Mater. 14 (2015) 23–36 [CrossRef] [Google Scholar]
  166. N. Kumamoto, N. Chanthaset, H. Ajiro, Polylactide stereocomplex bearing vinyl groups at chain ends prepared by allyl alcohol, malic acid, and citric acid, Polym. Degrad Stab. 180 (2020) 109311 [CrossRef] [Google Scholar]
  167. S. LJTM, The foreign body response to biodegradable polymers orchestrated by macrophages and the influence of anti-inflammatory drugs on this process (2021) 1–14 [Google Scholar]
  168. M.B. Gorbet, M.V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes, Biomaterials 25 (2004) 5681–5703 [CrossRef] [Google Scholar]
  169. E. Ruiz-Hitzky, P. Aranda, M. Darder, G. Rytwo, Hybrid materials based on clays for environmental and biomedical applications, J. Mater. Chem. 20 (2010) 9306–9321 [CrossRef] [Google Scholar]
  170. C. Zinge, B. Kandasubramanian, Nanocellulose based biodegradable polymers, Eur. Polym. J. 133 (2020) 109758 [CrossRef] [Google Scholar]
  171. D. Fuyuan, D. Hongbing, D. Yumin, S. Xiaowen, W. Qun, Emerging chitin and chitosan nanofibrous materials for biomedical application, Nanoscale 6 (2014) 9477–9493 [CrossRef] [Google Scholar]
  172. E. Avcu, F.E. Baştan, H.Z. Abdullah, M.A.U. Rehman, Y.Y. Avcu, A.R. Boccaccini, Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review, Prog. Mater. Sci. 103 (2019) 69–108 [CrossRef] [Google Scholar]
  173. J. Zhang, S. Zhao, Y. Zhu, Y. Huang, M. Zhu, C. Tao et al., Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration, Acta Biomater. 10 (2014) 2269–2281 [CrossRef] [Google Scholar]
  174. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering, Biomaterials 28 (2007) 3338–3348 [CrossRef] [Google Scholar]
  175. W.Y. Zhou, S.H. Lee, M. Wang, W.L. Cheung, W.Y. Ip, Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres, J. Mater. Sci. Mater. Med. 19 (2008) 2535–2540 [CrossRef] [Google Scholar]
  176. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, J. Biomed. Mater. Res. B 74 (2005) 782–788 [CrossRef] [Google Scholar]
  177. A. Pfister, R. Landers, A. Laib, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing, J. Polym. Sci. A 42 (2004) 624–638 [CrossRef] [Google Scholar]
  178. M.J. Pavlovich, J. Hunsberger, A. Atala, Biofabrication: a secret weapon to advance manufacturing, economies, and healthcare, Trends Biotechnol. 34 (2016) 679–680 [CrossRef] [Google Scholar]
  179. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs, Nat. Biotechnol. 32 (2014) 773–785 [CrossRef] [Google Scholar]
  180. Š. Selimović, M.R. Dokmeci, A. Khademhosseini, Organs-on-a-chip for drug discovery, Curr. Opin. Pharmacol. 13 (2013) 829–833 [CrossRef] [Google Scholar]
  181. Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu, S. Mou et al., A materials-science perspective on tackling COVID-19, Nat. Rev. Mater. 5 (2020) 847–860 [CrossRef] [Google Scholar]
  182. E. Larrañeta, J. Dominguez-Robles, D.A. Lamprou, Additive manufacturing can assist in the fight against COVID-19 and other pandemics and impact on the global supply chain, 3D Print Addit. Manuf. 7 (2020) 100–103 [CrossRef] [Google Scholar]
  183. M. Tarfaoui, M. Nachtane, I. Goda, Y. Qureshi, H. Benyahia, Additive manufacturing in fighting against novel coronavirus COVID-19, Int. J. Adv. Manuf. Technol. 110 (2020) 2913–2927 [CrossRef] [Google Scholar]
  184. R.C. Advincula, J.R.C. Dizon, Q. Chen, I. Niu, J. Chung, L. Kilpatrick et al., Additive manufacturing for COVID-19: devices, materials, prospects, and challenges, MRS Commun. 10 (2020) 413–427 [CrossRef] [Google Scholar]
  185. M. Javaid, A. Haleem, 3D Bioprinting applications for printing of skin: a brief study, Sensors Int. 2 (2021) 100123 [CrossRef] [Google Scholar]
  186. G. Aceto, V. Persico, A. Pescapé, Industry 4.0 and health: internet of things, big data, and cloud computing for Healthcare 4.0, J. Ind. Inf. Integr. 18 (2020) 1–14 [Google Scholar]
  187. V.V. Popov, M.L. Grilli, A. Koptyug, L. Jaworska, A. Katz-Demyanetz, D. Klobčar et al., Powder bed fusion additive manufacturing using critical raw materials: a review, Materials (Basel) 14 (2021) 1–37 [Google Scholar]
  188. G. Ma, C. Yu, B. Tang, Y. Li, F. Niu, D. Wu et al., High-mass-proportion TiCp/Ti6Al4V titanium matrix composites prepared by directed energy deposition, Addit. Manuf. 35 (2020) 101323 [Google Scholar]
  189. T. Zhao, M. Dahmen, W. Cai, M. Alkhayat, J. Schaible, P. Albus et al., Laser metal deposition for additive manufacturing of AA5024 and nanoparticulate TiC modified AA5024 alloy composites prepared with balling milling process, Opt. Laser Technol. 131 (2020) 106438 [CrossRef] [Google Scholar]
  190. O.O. Salman, C. Gammer, J. Eckert, M.Z. Salih, E.H. Abdulsalam, K.G. Prashanth et al., Selective laser melting of 316L stainless steel: influence of TiB2 addition on microstructure and mechanical properties, Mater. Today Commun. (2019) 21 [Google Scholar]
  191. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang et al., Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility, Acta Mater. 129 (2017) 183–193 [CrossRef] [Google Scholar]
  192. K.D. Traxel, A. Bandyopadhyay, Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing, Addit. Manuf. 31 (2020) 101004 [Google Scholar]
  193. S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy 37 (2009) 181–189 [CrossRef] [Google Scholar]
  194. K. Ayers, The potential of proton exchange membrane–based electrolysis technology, Curr. Opin. Electrochem. 18 (2019) 9–15 [CrossRef] [Google Scholar]
  195. M. Maier, Q. Meyer, J. Majasan, C. Tan, I. Dedigama, J. Robinson et al., Operando flow regime diagnosis using acoustic emission in a polymer electrolyte membrane water electrolyser, J. Power Sources 424 (2019) 138–149 [CrossRef] [Google Scholar]
  196. L. Zeng, P. Li, Y. Yao, B. Niu, S. Niu, B. Xu, Recent progresses of 3D printing technologies for structural energy storage devices, Mater. Today Nano. 12 (2020) 1–13 [Google Scholar]
  197. A. Ambrosi, R.D. Webster, 3D printing for aqueous and non-aqueous redox flow batteries, Curr. Opin. Electrochem. 20 (2020) 28–35 [CrossRef] [Google Scholar]
  198. M.N. Nadagouda, M. Ginn, V. Rastogi, A review of 3D printing techniques for environmental applications, Curr. Opin. Chem. Eng. 28 (2020) 173–178 [CrossRef] [Google Scholar]
  199. J. Li, M.C. Leu, R. Panat, J. Park, A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing, Mater. Des. 119 (2017) 417–424 [CrossRef] [Google Scholar]
  200. F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu et al., 3D printing technologies for electrochemical energy storage, Nano Energy 40 (2017) 418–431 [CrossRef] [Google Scholar]
  201. A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, M.A. Pope, Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes, Carbon N Y 119 (2017) 257–266 [CrossRef] [Google Scholar]
  202. E.A.A. Alkebsi, H. Ameddah, T. Outtas, A. Almutawakel, Design of graded lattice structures in turbine blades using topology optimization, Int. J. Comput. Integr. Manuf. 34 (2021) 370–384 [CrossRef] [Google Scholar]
  203. S. Poole, R. Phillips, Rapid prototyping of small wind turbine blades using additive manufacturing, in Proc 2015 Pattern Recognit Assoc South Africa Robot Mechatronics Int Conf PRASA-RobMech 2015 (2015), pp. 189–194 [Google Scholar]
  204. M. Rouway, M. Nachtane, M. Tarfaoui, N. Chakhchaoui, L.E.H. Omari, F. Fraija et al., 3D printing: rapid manufacturing of a new small-scale tidal turbine blade, Int. J. Adv. Manuf. Technol. 115 (2021) 61–76 [CrossRef] [Google Scholar]
  205. M. Tlotleng, S. Pityana, LENS manufactured γ-TNB turbine blade using Laser in situ alloying approach, MRS Adv. 5 (2020) 1203–1213 [CrossRef] [Google Scholar]
  206. Nagata, S. Yoshimoto, K. Kiguchi, K. Watanabe, Design of 3D printer-Like data interface (2016) 40–50 [Google Scholar]
  207. M.B. Abdullahi, M.H. Ali, Additively manufactured metastructure design for broadband radar absorption, Beni-Suef Univ. J. Basic Appl. Sci. (2021) 10 [Google Scholar]
  208. C. Youssef, R. Allanic, A. Anne-Charlotte, A. Sarra, E.O. Ahmed, Q. Cedric et al., Ku-band lightweight aluminium waveguides fabricated by direct metal laser sintering process, in 2020 Int Symp Adv Electr Commun Technol ISAECT (2020) 2020 [Google Scholar]
  209. A. Bacha, A.H. Sabry, J. Benhra, Fault diagnosis in the field of additive manufacturing (3D printing) using Bayesian Networks, Int. J. Online Biomed. Eng. 15 (2019) 110–123 [CrossRef] [Google Scholar]
  210. D.S. Thomas, S.W. Gilbert, Costs and cost effectiveness of additive manufacturing: a literature review and discussion (2015) [Google Scholar]
  211. A. Mahadik, D. Masel, Implementation of additive manufacturing cost estimation tool (AMCET) using break-down approach, Proc. Manuf. 17 (2018) 70–77 [Google Scholar]
  212. B. Khoshnevis, S. Bukkapatnam, H. Kwon, J. Saito, Experimental investigation of contour crafting using ceramics materials, Rapid Prototyp. J. 7 (2001) 32–41 [CrossRef] [Google Scholar]
  213. P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the construction industry, Autom. Constr. 68 (2016) 21–31 [CrossRef] [Google Scholar]
  214. O. Geneidy, W.S.E. Ismaeel, A. Abbas, A critical review for applying three-dimensional concrete wall printing technology in Egypt, Archit. Sci. Rev. 62 (2019) 438–452 [CrossRef] [Google Scholar]
  215. P. Sikora, S.Y. Chung, M. Liard, D. Lootens, T. Dorn, P.H. Kamm et al., The effects of nanosilica on the fresh and hardened properties of 3D printable mortars, Constr. Build Mater. 281 (2021) 122574 [CrossRef] [Google Scholar]
  216. T.A.M. Salet, Z.Y. Ahmed, F.P. Bos, H.L.M. Laagland, Design of a 3D printed concrete bridge by testing, Virtual Phys. Prototyp. 13 (2018) 222–236 [CrossRef] [Google Scholar]
  217. T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G.F. Gibb, T. Thorpe, Mix design and fresh properties for high-performance printing concrete, Mater. Struct. Constr. 45 (2012) 1221–1232 [CrossRef] [Google Scholar]
  218. T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, R. Law, A.G.F. Gibb et al., Hardened properties of high-performance printing concrete, Cem. Concr. Res. 42 (2012) 558–566 [CrossRef] [Google Scholar]
  219. C.C. Santiago, B. Yelamanchi, J.A. Diosdado De la Peña, J. Lamb, K. Roguski, F. Turzyński et al., Thermoplastic extrusion additive manufacturing of high-performance carbon fiber PEEK lattices, Crystals 11 (2021) 1453 [CrossRef] [Google Scholar]
  220. E. MacDonald, A. Du Plessis, Introducing a new member of the additive family, Addit. Manuf. Lett. 1 (2021) 100001 [CrossRef] [Google Scholar]
  221. B. Mummareddy, D. Negro, V.T. Bharambe, Y. Oh, E. Burden, M. Ahlfors et al., Mechanical properties of material jetted zirconia complex geometries with hot isostatic pressing, Adv. Ind. Manuf. Eng. 3 (2021) 100052 [Google Scholar]
  222. A. du Plessis, S.G. le Roux, M. Tshibalanganda, Advancing X-ray micro computed tomography in Africa: going far, together, Sci. African 3 (2019) e00061 [CrossRef] [Google Scholar]
  223. A. du Plessis, A.J. Babafemi, S.C. Paul, B. Panda, J.P. Tran, C. Broeckhoven, Biomimicry for 3D concrete printing: a review and perspective, Addit. Manuf. 38 (2021) 101823 [Google Scholar]
  224. M. Juhasz, R. Tiedemann, G. Dumstorff, J. Walker, A. Du Plessis, B. Conner et al., Hybrid directed energy deposition for fabricating metal structures with embedded sensors, Addit. Manuf. 35 (2020) 101397 [Google Scholar]
  225. A. du Plessis, Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography, Addit. Manuf. 30 (2019) 100871 [Google Scholar]
  226. A. du Plessis, S.G. le Roux, Standardized X-ray tomography testing of additively manufactured parts: a round robin test, Addit. Manuf. 24 (2018) 125–136 [Google Scholar]
  227. A. du Plessis, S.G. le Roux, A. Guelpa, Comparison of medical and industrial X-ray computed tomography for non-destructive testing, Case Stud. Nondestruct. Test Eval. 6 (2016) 17–25 [CrossRef] [Google Scholar]
  228. A. du Plessis, C. Broeckhoven, Looking deep into nature: a review of micro-computed tomography in biomimicry, Acta Biomater. 85 (2019) 27–40 [CrossRef] [Google Scholar]
  229. A. du Plessis, W.P. Boshoff, A review of X-ray computed tomography of concrete and asphalt construction materials, Constr. Build Mater. 199 (2019) 637–651 [CrossRef] [Google Scholar]
  230. E. Burden, Y. Oh, B. Mummareddy, D. Negro, P. Cortes, A. Du Plessis et al., Unit cell estimation of volumetrically-varying permittivity in additively-manufactured ceramic lattices with X-ray computed tomography, Mater. Des. 210 (2021) 110032 [CrossRef] [Google Scholar]
  231. A. du Plessis, I. Yadroitsava, I. Yadroitsev, Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights, Mater. Des. 187 (2020) 108385 [CrossRef] [Google Scholar]
  232. J. Kruger, A. du Plessis, G. van Zijlm, An investigation into the porosity of extrusion-based 3D printed concrete, Addit. Manuf. 37 (2021) 101740 [Google Scholar]
  233. S. Chen, Y. Tong, P.K. Liaw, Additive manufacturing of high-entropy alloys: a review, Entropy 20 (2018) 1–18 [Google Scholar]
  234. E. Maire, P.J. Withers, Quantitative X-ray tomography, Int. Mater. Rev. 59 (2014) 1–43 [CrossRef] [Google Scholar]
  235. W.B. Preez, D.J. De Beer, G.J. Booysen, Establishing a quality management system for production of certified customised Titanium medical implants through additive manufacturing, MRS Adv. (2020) 1387–1396 [CrossRef] [Google Scholar]
  236. W. Lu, W. Zhai, J. Wang, X. Liu, L. Zhou, A.M.M. Ibrahim et al., Additive manufacturing of isotropic-grained, high-strength and high-ductility copper alloys, Addit. Manuf. 38 (2021) 101751 [Google Scholar]
  237. P. Foteinopoulos, A. Papacharalampopoulos, P. Stavropoulos, On thermal modeling of additive manufacturing processes, CIRP J. Manuf. Sci. Technol. 20 (2018) 66–83 [CrossRef] [Google Scholar]
  238. P. Foteinopoulos, A. Papacharalampopoulos, K. Angelopoulos, P. Stavropoulos, Development of a simulation approach for laser powder bed fusion based on scanning strategy selection, Int. J. Adv. Manuf. Technol. 108 (2020) 3085–3100 [CrossRef] [Google Scholar]
  239. F.M. Mwema, E.T. Akinlabi, O.S. Fatoba, Visual assessment of 3D printed elements: a practical quality assessment for home-made FDM products, Mater. Today Proc. 26 (2019) 1520–1525 [Google Scholar]
  240. M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz et al., Progress towards metal additive manufacturing standardization to support qualification and certification, JOM 69 (2017) 439–455 [CrossRef] [Google Scholar]
  241. M.D. Monzón, Z. Ortega, A. Martínez, F. Ortega, Standardization in additive manufacturing: activities carried out by international organizations and projects, Int. J. Adv. Manuf. Technol. 76 (2015) 1111–1121 [CrossRef] [Google Scholar]
  242. J. Slotwinskic, S. Moylan, Applicability of existing materials testing standards for additive manufacturing materials, Addit. Manuf. Mater. Stand Test Appl. (2015) 49–66 [Google Scholar]
  243. A. Garcia-Dominguez, J. Claver, A.M. Camacho, M.A. Sebastian, Analysis of general and specific standardization developments in additive manufacturing from a materials and technological approach, IEEE Access 8 (2020) 125056–125075 [CrossRef] [Google Scholar]
  244. B. Lozanovski, D. Downing, R. Tino, A. du Plessis, P. Tran, J. Jakeman et al., Non-destructive simulation of node defects in additively manufactured lattice structures, Addit. Manuf. 36 (2020) 101593 [Google Scholar]
  245. R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10 (2011) 817–822 [CrossRef] [Google Scholar]
  246. M. Saâdaoui, F. Khaldoun, J. Adrien, H. Reveron, J. Chevalier, X-ray tomography of additive-manufactured zirconia: processing defects – strength relations, J. Eur. Ceram Soc. 40 (2020) 3200–3207 [CrossRef] [Google Scholar]
  247. A. Tawfik, M. Radwan, M.A. Attia, P. Bills, R. Racasan, L. Blunt, The detection of unfused powder in EBM and SLM additive manufactured components, Int. J. Autom. Technol. 14 (2020) 1025–1035 [CrossRef] [Google Scholar]
  248. W.B. du Preez, D.J. de Beer, Implementing the South African additive manufacturing technology roadmap – the role of an additive manufacturing centre of competence, South African J. Ind. Eng. 26 (2015) 85–92 [CrossRef] [Google Scholar]
  249. D.J. De Beer, Additive manufacturing as tool to support sustainable development, Ann. DAAAM Proc. Int. DAAAM Symp. 21 (2010) 1539–1540 [Google Scholar]
  250. M. Oyesola, N. Mathe, K. Mpofu, S. Fatoba, Sustainability of additive manufacturing for the South African aerospace industry: a business model for laser technology production, commercialization and market prospects, Proc. CIRP 72 (2018) 1530–1535 [CrossRef] [Google Scholar]
  251. D.J. De Beer, Establishment of rapid prototyping/additive manufacturing in South Africa, J. South African Inst. Min. Metall. 111 (2011) 211–215 [Google Scholar]
  252. R.I. Campbell, D.J. De Beer, E. Pei, Additive manufacturing in South Africa: building on the foundations, Rapid Prototyp. J. 17 (2011) 156–162 [CrossRef] [Google Scholar]
  253. D. Kunniger, Diffusion of additive manufacturing in Gauteng South Africa, University of Pretoria (2015) [Google Scholar]
  254. S. Shashnov, M. Kotsemir, Research landscape of the BRICS countries: current trends in research output, thematic structures of publications, and the relative influence of partners, vol. 117. Springer International Publishing (2018) [Google Scholar]
  255. N. Bautista-Puig, A.M. Aleixo, S. Leal, U. Azeiteiro, R. Costas, Unveiling the research landscape of sustainable development goals and their inclusion in higher education institutions and research centers: major trends in 2000–2017, Front. Sustain. 2 (2021) 1–18 [CrossRef] [Google Scholar]
  256. G. Amolo, N. Chetty, A. Hassanali, D. Joubert, R. Martin, S. Scandolo, Growing materials science in Africa – the case of the African School for Electronic Structure Methods and Application (ASESMA), Nature 388 (1997) 539–547 [CrossRef] [Google Scholar]
  257. W.E. Stumpf, Where should the national R&D in materials science fit into South Africa’s future nuclear power programme? J. South African Inst. Min. Metall. 115 (2015) 893–902 [CrossRef] [Google Scholar]
  258. M.C. Flemings, R.W. Cahn, Organization and trends in materials science and engineering education in the US and Europe, Acta Mater. 48 (2000) 371–383 [CrossRef] [Google Scholar]
  259. R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Revolutionary additive manufacturing: an overview, Lasers Eng. 27 (2014) 161–178 [Google Scholar]
  260. W.B. du Preez, D.J. de Beer, RAPDASA – a vehicle for product development technology diffusion in South Africa, in Proc. All Africa Technol. Diffus. Conf., Boksburg, South Africa (2006) [Google Scholar]
  261. K. Essa, A. Sabouri, H. Butt, F.H. Basuny, M. Ghazy, M.A. El-Sayed, Laser additive manufacturing of 3D meshes for optical applications, PLoS One 13 (2018) 4–11 [Google Scholar]
  262. Z.G. Zhu, X.H. An, W.J. Lu, Z.M. Li, F.L. Ng, X.Z. Liao et al., Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy, Mater. Res. Lett. 7 (2019) 453–459 [CrossRef] [Google Scholar]
  263. A.B. Stefaniak, S. Du Preez, J.L. Du Plessis, Additive manufacturing for occupational hygiene: a comprehensive review of processes, emissions, & exposures, J. Toxicol. Environ. Heal B 24 (2021) 173–222 [CrossRef] [Google Scholar]
  264. A.B. Stefaniak, L.N. Bowers, S.B. Martin, D.R. Hammond, J.E. Ham, J.R. Wells et al., Large-format additive manufacturing and machining using high-melt-temperature polymers. Part II: characterization of particles and gases, ACS Chem. Heal. Saf. 28 (2021) 268–278 [CrossRef] [Google Scholar]
  265. H.J. O’Connor, D.P. Dowling, Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process, Addit. Manuf. 31 (2020) 100961 [Google Scholar]
  266. A.B. Stefaniak, A.R. Johnson, S. du Preez, D.R. Hammond, J.R. Wells, J.E. Ham et al., Insights into emissions and exposures from use of industrial-scale additive manufacturing machines, Saf. Health Work 10 (2019) 229–236 [CrossRef] [Google Scholar]
  267. D. de Beer, W. du Preez, H. Greyling, F. Prinsloo, F. Sciammarella, N. Trollip et al., A South African Additive Manufacturing Strategy, Johannesburg (2016) [Google Scholar]
  268. M.O. Alabi, Framework for effective Additive Manufacturing education at South African universities MO Alabi Promoter, North-West University (2019) [Google Scholar]
  269. I. Yadroitsev, I. Yadroitsava, A. du Plessis, E. Macdonald, Fundamentals of Laser Powder Bed Fusion of Metals, Elsevier, Amsterdam (2021) [Google Scholar]
  270. V.A.J. Jaques, A. Du Plessis, M. Zemek, J. Šalplachta, Z. Stubianová, T. Zikmund et al., Review of porosity uncertainty estimation methods in computed tomography dataset, Meas. Sci. Technol. 32 (2021) 1–17 [Google Scholar]
  271. P.K. Farayibi, T.E. Abioye, A study on the awareness level of additive manufacturing technology in south-western Nigeria, Afr. J. Sci. Technol. Innov. Dev. 9 (2017) 157–162 [CrossRef] [Google Scholar]
  272. A.O. Inoma, O.O. Ibhadode, A.A.O. Ibhadode, The perception and deployment of 3D printing in the Nigerian educational sector for science and engineering programs, Sci. Afr. 10 (2020) e00641 [Google Scholar]
  273. C. Mambula, Perceptions of SME growth constraints in Nigeria, J. Small Bus. Manag. 40 (2002) 58–65 [CrossRef] [Google Scholar]
  274. M.A. Loto, Global economic downturn and the manufacturing sector performance in the Nigerian economy (a quarterly empirical analysis), J. Emerg. Trends Econ. Manag. Sci. 3 (2012) 38–45 [Google Scholar]
  275. S.O. Jimoh, P.S.A. Irabor, I.U. Abhulimen, S.O. Amiebenormon, Casting aechnology and developments: Nigeria as a AASE study, Int. J. Sci. Technol. Res. 2 (2013) 257–261 [Google Scholar]
  276. Thales Group, Thales Industrial Competence Centre for metal 3D printing facility 2021. (accessed November 24, 2021) [Google Scholar]
  277. Ministry of Industry and Trade, Industrial Acceleration Plan 2014–2020 (2014). (accessed November 24, 2021) [Google Scholar]
  278. B.E.N. Rejeb, B. Roussel, Design and innovation learning: case study in north african engineering universities using creativity workshops and fabrication laboratories, Proc. CIRP 70 (2017) 331–337 [Google Scholar]
  279. M. Sakin, Y.C. Kiroglu, 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM (2017) [Google Scholar]
  280. S. Achouch, L. Masmoudi, P. Nonnon, M. Gharbi, 3D printed capacitive relative pressure sensor for use in a CAE environment, IEEE 11th Annu. Comput. Commun. Work. Conf. (2021), 1366–1369 [Google Scholar]
  281. D.E.P. Klenam, Composition refinement of medium carbon-low alloy steels to improve wear and corrosion resistance for rail axle applications, University of the Witwatersrand (2019) [Google Scholar]
  282. C.L. Hwa, M.B. Uday, N. Ahmad, A. Mohd, S. Rajoo, K. Bin, Integration and fabrication of the cheap ceramic membrane through 3D printing technology, Mater. Today Commun. 15 (2018) 134–142 [CrossRef] [Google Scholar]
  283. L. Boustead, M. Pretorius, Additive manufacturing in the spinal orthopedic industry: an exploratory review, in 8th Int. Conf. Int. Assoc. Manag. Technol. (IAMOT 2019) theme –“Managing Technol. Incl. Sustain. Growth,” Mumbai, India: Excel India, edited by K. Jain, S. Sangle, R. Gupta, J. Persis, R. Mukundan (2019), pp. 114–122 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.