Open Access
Review
Issue
Manufacturing Rev.
Volume 10, 2023
Article Number 1
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2022034
Published online 10 January 2023
  1. D. Setti, M.K. Sinha, S. Ghosh, P.V. Rao, Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids, Int. J. Mach. Tools Manufact. 88 (2015) 237–248 [CrossRef] [Google Scholar]
  2. K.M. Lee, M.R. Hsu, J.H. Chou, C.Y. Guo, Improved differential evolution approach for optimization of surface grinding process, Exp. Syst. Appl. 38 (2011) 5680–5686 [CrossRef] [Google Scholar]
  3. E. Brinksmeier, D. Meyer, A.G. Huesmann-Cordes, C. Herrmann, Metalworking fluids − mechanisms and performance, CIRP Ann. Manufactur. Technol. 64 (2015) 605–628 [CrossRef] [Google Scholar]
  4. K. Li, F. Aghazadeh, S. Hatipkarasulu, T.G. Ray, Health risks from exposure to metal-working fluids in machining and grinding operations, Int. J. Occupat. Saf. Ergon. 9 (2003) 75–95 [CrossRef] [Google Scholar]
  5. J.C. Aurich, B. Linke, M.Z. Hauschild, M. Carrella, B. Kirsch, Sustainability of abrasive processes, CIRP Ann. Manufactur. Technol. 62 (2013) 653–672 [CrossRef] [Google Scholar]
  6. M.S. Najiha, M.M. Rahman, A.R. Yusoff, Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: a review, Renew. Sustain. Energy Rev. 60 (2016) 1008–1031 [Google Scholar]
  7. P.B. Patole, V.V. Kulkarni, S.G. Bhatwadekar, MQL Machining with nano fluid: a review, Manufactur. Rev. 8 (2021) 1–18 [Google Scholar]
  8. R. Chakule, S. Chaudhari, P. Talmale, Recent advancement for green and sustainable manufacturing grinding process: a review, J. Nanosci. Technol. 5 (2019) 857–861 [Google Scholar]
  9. N. Tosun, H. Pihtili, Gray relational analysis of performance characteristics in MQL milling of 7075 Al alloy, Int. J. Adv. Manufactur. Technol. 46 (2010) 509–515 [CrossRef] [Google Scholar]
  10. Z.Q. Liu, J. Xu, S. Han, M. Chen, A coupling method of response surfaces (CRSM) for cutting parameters optimization in machining titanium alloy under minimum quantity lubrication (MQL) condition, Int. J. Precis. Eng. Manufactur. 14 (2013) 693–702 [CrossRef] [Google Scholar]
  11. V.N. Gaitonde, S.R. Karnik, J. Paulo Davim, Optimal MQL and cutting conditions determination for desired surface roughness in turning of brass using genetic algorithms, Int. J. Mach. Sci. Technol. 16 (2012) 304–320 [CrossRef] [Google Scholar]
  12. T.K. Ali, A. Bijanzad, M. Bakkal, Experimental investigations of machinability in the turning of compacted graphite iron using minimum quantity lubrication, Int. J. Mach. Sci. Technol. 19 (2015) 559–576 [CrossRef] [Google Scholar]
  13. M. Hadad, An experimental investigation of the effects of machining parameters on environmentally friendly grinding process, J. Clean. Product. 108 (2015) 217–231 [CrossRef] [Google Scholar]
  14. P.N.L. Pavani, R. PolaRao, S. Srikiran, Performance evaluation and optimization of nano boric acid powder weight percentage mixed with vegetable oil using the Taguchi approach, J. Mech. Sci. Technol. 29 (2015) 4877–4883 [Google Scholar]
  15. F. Rabiei, A.R. Rahimi, M.J. Hadad, M. Ashrafijou, Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization, J. Clean. Product. 86 (2015) 447–460 [CrossRef] [Google Scholar]
  16. T-V. Do, Q-C. Hsu, Optimization of minimum quantity lubricant conditions and cutting parameters in hard milling of AISI H13 Steel, Appl. Sci. 6 (2016) 1–11 [Google Scholar]
  17. M.K. Gupta, P.K. Sood, V.S. Sharma, Optimization of machining parameters and cutting fluids during nanofluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques, J. Clean. Product. 135 (2016) 1276–1288 [CrossRef] [Google Scholar]
  18. R.R. Chakule, S.S. Chaudhari, P.S. Talmale, Evaluation of the effects of machining parameters on MQL based surface grinding process using response surface methodology, J. Mech. Sci. Technol. 31 (2017) 3907–3916 [Google Scholar]
  19. M. Mia, M.A. Bashir, M.A. Khan, N.R. Dhar, Optimization of MQL flow rate for minimum cutting force and surface roughness in end milling of hardened steel (HRC 40), Int. J. Adv. Manufactur. Technol. 89 (2017) 675–690 [CrossRef] [Google Scholar]
  20. A.M. Khan, M. Jamil, M. Mia, D.Y. Pimenov, V.R. Gasiyarov, M.K. Gupta, N. He, Multi-objective optimization for grinding of AISI D2 steel with Al2O3 wheel under MQL, Materials 11 (2018) 2269 [Google Scholar]
  21. R. Viswanathan, S. Ramesh, V. Subburam, Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions, Measurement 120 (2018) 107–113 [Google Scholar]
  22. M. Muaz, S.K. Choudhury, Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel, Measurement 138 (2019) 557–569 [Google Scholar]
  23. S.K. Tamang, M. Chandrasekaran, Machining performance optimisation of MQL-assisted turning of Inconel-825 superalloy using GA for industrial applications, Int. J. Mach. Machinab. Mater. 21 (2019) 43–65 [Google Scholar]
  24. A.S. Awale, M. Vashista, M.Z.K. Yusufzai, Multi-objective optimization of MQL mist parameters for eco-friendly grinding, J. Manufactur. Process. 56 (2020) 75–86 [Google Scholar]
  25. M. Abas, L. Sayd, R. Akhtar, Q.S. Khalid, A.M. Khan, C.I. Pruncu, Optimization of machining parameters of aluminum alloy 6026-T9 under MQL-assisted turning process, J. Mater. Res. Technol. 9 (2020) 10916–10940 [Google Scholar]
  26. A. Shastri, A. Nargundkar, A.J. Kulkarni, L. Benedicenti, Optimization of process parameters for turning of titanium alloy (Grade II) in MQL environment using multi‑CI algorithm, SN Appl. Sci. 3 (2021) 1–12 [Google Scholar]
  27. M.K. Gupta, M. Boy, M.E. Korkmaz, N. Yasar, M. Giinay, G.M. Krolczyk, Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel, Measurement 187 (2022) 110353. [Google Scholar]
  28. A.-L. Van, T.-T. Nguyen, Investigation and optimization of MQL system parameters in the roller-burnishing process of hardened steel, J. Mech. Eng. 68 (2022) 155–165 [Google Scholar]
  29. N.R. Dhar, M.W. Islam, M.A.H. Mithu, The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel, J. Mater. Process. Technol. 171 (2006) 93–99 [Google Scholar]
  30. L.R. da Silva, E.C. Bianchi, R.Y. Fusse, R.E. Catai, T.V. Franca, P.R. Aguiar, Analysis of surface integrity for minimum quantity lubricant-MQL in grinding, Int. J. Mach. Tools Manufact. 47 (2007) 412–418 [CrossRef] [Google Scholar]
  31. M.H. Sadeghi, M.J. Haddad, T. Tawakoli, M. Emami, Minimal quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy, Int. J. Adv. Manufactur. Technol. 44 (2009) 487–500 [CrossRef] [Google Scholar]
  32. T. Tawakoli, M.J. Hadad, M.H. Sadeghi, Influence of oil mist parameters on minimum quantity lubrication − MQL grinding process, Int. J. Mach Tools Manufact. 50 (2010) 521–531 [CrossRef] [Google Scholar]
  33. V.S. Sharma, G. Singh, K. Sørby, A review on minimum quantity lubrication for machining processes, Mater. Manufactur. Process. (2014). doi: 10.1080/10426914.2014.994759 [Google Scholar]
  34. Chetan, S. Ghosh, P. VenkateswaraRao, Application of sustainable techniques in metal cutting for enhanced machinability: a review, J. Clean. Product. 100 (2015) 17–34 [CrossRef] [Google Scholar]
  35. Y. Shokoohi, E. Shekarian, Application of nanofluids in machining processes − a review, J. Nanosci. Technol. 2 (2016) 59–63 [Google Scholar]
  36. X. Huang, Y. Ren, W. Jiang, Z. He, Z. Deng, Investigation on grind-hardening annealed AISI5140 steel with minimal quantity lubrication, Int. J. Adv. Manufactur. Technol. 89 (2017) 1069–1077 [CrossRef] [Google Scholar]
  37. X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Exp. Therm. Fluid Sci. 31 (2007) 593–599 [CrossRef] [Google Scholar]
  38. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renew. Sustain. Energy Rev. 15 (2011) 1646–1668 [Google Scholar]
  39. H. Xie, Y. Wei, Y. Li, L. Chen, Discussion on the thermal conductivity enhancement of nanofluids, Nanoscale Res. Lett. 6 (2011) 1–12 [Google Scholar]
  40. W. Yu, H. Xie, Y. Li, L. Chen, Q. Wang, Experimental investigation on the heat transfer properties of Al2O3nanofluids using the mixture of ethylene glycol and water as base fluid, Powder Technol. 230 (2012) 14–19 [Google Scholar]
  41. P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluids, Int. Nano Lett. 4 (2014) 109–120 [CrossRef] [Google Scholar]
  42. C. Mao, H. Zou, X. Zhou, Y. Huang, H. Gan, Z. Zhou, Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding, Int. J. Adv. Manufactur. Technol. 71 (2014) 2073–2081 [CrossRef] [Google Scholar]
  43. S.S. Sonawane, R.S. Khedkar, K.L. Wasewar, Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2-water, ethylene glycol, and paraffin oil nanofluids and models comparisons, J. Exp. Nanosci. 10 (2015) 310–322 [CrossRef] [Google Scholar]
  44. D.K. Devendiran, V.A. Amirtham, A review on preparation, characterization, properties and applications of nanofluids, Renew. Sustain. Energy Rev. 60 (2016) 21–40 [Google Scholar]
  45. H.W. Chiam, W.H. Azmi, N.A. Usri, R. Mamat, N.M. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture, Exp. Therm. Fluid Sci. 81 (2017) 420–429 [CrossRef] [Google Scholar]
  46. S.S. Chaudhari, R.R. Chakule, P.S. Talmale, Experimental study of heat transfer characteristics of Al2O3 and CuO nanofluids for machining application, Materials today: Proceedings 18 (2019) 788–797 [Google Scholar]
  47. C. Mao, H. Zou, X. Huang, J. Zhang, Z. Zhou, The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication, Int. J. Adv. Manufactur. Technol. 64 (2013) 1791–1799 [CrossRef] [Google Scholar]
  48. K. Manoj Kumar, A. Ghosh, Synthesis of MWCNT nanofluid and evaluation of its potential besides soluble oil as micro cooling-lubrication medium in SQL grinding, Int. J. Adv. Manufactur. Technol. 77 (2015) 1955–1964 [CrossRef] [Google Scholar]
  49. Y. Wang, C. Li, Y. Zhang, B. Li, M. Yang, X. Zhang, S. Guo, G. Liu, Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids, Tribol. Int. 99 (2016) 198–210 [Google Scholar]
  50. Y. Wang, C. Li, Y. Zhang, M. Yang, X. Zhang, N. Zhang, J. Dai, Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids, J. Clean. Product. 142 (2017) 3571–3583 [CrossRef] [Google Scholar]
  51. S. Paul, A.K. Singh, A. Ghosh, Grinding of Ti-6Al-4V under small quantity cooling lubrication environments using alumina and MWCNT nanofluids, Mater. Manufactur. Process. 32 (2017) 608–615 [Google Scholar]
  52. P.B. Patole, V.V. Kulkarni, Experimental investigation and optimization of cutting parameters with multi response characteristics in MQL turning of AISI 4340 using nanofluid, Cogent Eng. 4 (2017) 1–14 [Google Scholar]
  53. D. Setti, S. Ghosh, V. Rao, V.R. Paruchuri, Influence of nanofluid application on wheel wear, coefficient of friction and redeposition phenomenon in surface grinding of Ti-6Al-4V, Proc. Inst. Mech. Eng. B 232 (2018) 128–140 [Google Scholar]
  54. M. Seyedzavvar, M. Shabgard, M. Mohammadpourfard, Investigation into the performance of eco-friendly graphite nanofluid as lubricant in MQL grinding, Mach. Sci. Technol. 23 (2019) 569–594 [Google Scholar]
  55. M. Li, T. Yu, H. Li, L. Yang, J. Shi, W. Wang, Research on surface integrity in grapheme nanofluid MQL milling of TC21 alloy, Int. J. Abras. Technol. 9 (2019) 49–59 [CrossRef] [Google Scholar]
  56. A. Das, S.K. Patel, S.R. Das, Performance comparison of vegetable oil based nanofluids towards machinability improvement in hard turning of HSLA steel using minimum quantity lubrication, Mech. Ind. 20 (2019) 1–20 [Google Scholar]
  57. R.R. Chakule, S.S. Chaudhari, P.S. Talmale, Optimization of nanofluid minimum quantity lubrication (NanoMQL) technique for grinding performance using Jaya algorithm, in Advanced Engineering Optimization through Intelligent Techniques. Advances in Intelligent Systems and Computing, edited by R. VenkataRao, J. Taler (Springer, Singapore, 2020), vol. 949, pp. 211–221 [Google Scholar]
  58. F. Giinan, T. Kivak, C.V. Yildirim, M. Sarikaya, Performance evaluation of MQL with Al2O3 mixed nanofluids prepared at different concentrations in milling of Hastelloy C276 alloy, J. Mater. Res. Technol. 9 (2020) 10386–10400 [Google Scholar]
  59. K. Manoj Kumar, A. Ghosh, On grinding force ratio, specific energy, G-ratio and residual stress in SQCL assisted grinding using aerosol of MWCNT nanofluid, Mach. Sci. Technol. 25 (2021) 585–607 [Google Scholar]
  60. P.B. Patole, G.J. Pol, A.A. Desai, S.B. Kamble, Analysis of surface roughness and cutting force under MQL turning using nano fluids, J. Mater. Today: Proc. 45 (2021) 5684–5688 [Google Scholar]
  61. M. Sarikaya, M.K. Gupta, I. Tomaz, M. Danish, M. Mia, S. Rubaiee, M. Jamil, D.Y. Pimenov, N. Khanna, Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review, J. Manufactur. Process. 62 (2021) 179–201 [Google Scholar]
  62. B. Sen, M. Mia, G.M. Krolczyk, U.K. Mandal, S.P. Mondal, Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing, Int. J. Precis. Eng. Manufactur. Green Technol. 8 (2021) 249–280 [CrossRef] [Google Scholar]
  63. J.S. Nam, D.H. Kim, H. Chung, S.W. Lee, Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm, J. Clean. Product. 102 (2015) 428–436 [CrossRef] [Google Scholar]
  64. P.J. Patil, C.R. Patil, Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade, Perspect. Sci. 8 (2016) 367–369 [Google Scholar]
  65. R.R. Chakule, S.S. Chaudhari, P.S. Talmale, Evaluation of the effects of machining parameters on MQL based surface grinding process using response surface methodology, J. Mech. Sci. Technol. 31 (2017) 3907–3916 [Google Scholar]
  66. S. Sirin, T. Kıvak, Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy, Tribol. Int. 137 (2019) 180–192 [Google Scholar]
  67. I. Sharmin, M.A. Gafur, N.R. Dhar, Preparation and evaluation of a stable CNT-water based nano cutting fluid for machining hard-to-cut material, SN Appl. Sci. 2 (2020) 626 [Google Scholar]
  68. M. Seyedzavvar, H. Abbasi, M. Kiyasatfar, R.N. Ilkhchi, Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding operations, Adv. Manufactur. 8 (2020) 344–360 [CrossRef] [Google Scholar]
  69. A.M.M. Ibrahim, W. Li, H. Xiao, Z. Zeng, Y. Ren, M.S. Alsoufi, Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/grapheme nano additive and MQL lubrication, Tribol. Int. 150 (2020) 106387 [Google Scholar]
  70. S.T. Prashatha Kumar, H.P. ThirthaPrasada, M. Nagamadhu, C. Siddaraju, Investigate the effect of Al2O3 and CuO nano cutting fluids under MQL technique in turning of DSS-2205, Adv. Mater. Process. Technolog. (2021). doi:10.1080/2374068x.2021.1948701 [Google Scholar]
  71. A. Tiwari, D. Agarwal, A. Singh, Computational analysis of machining characteristics of surface using varying concentration of nanofluids (Al2O3, CuO and TiO2) with MQL, Mater. Today: Proc. 42 (2021) 1262–1269 [Google Scholar]
  72. A. Yiicel, C.V. Yildirim, M. Sarikaya, S. Sirin, T. Kivak, M.K. Gupta, I.V. Tomaz, Influence of MoS2 based nanofluid-MQL on tribological and machining characteristics in turning of AA 2024T3 aluminum alloy, J. Mater. Res. Technol. 15 (2021) 1688–1704 [Google Scholar]
  73. Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang, Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding, Int. J. Mach. Tools Manufact. 99 (2015) 19–33 [CrossRef] [Google Scholar]
  74. Y. Zhang, C. Li, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X. Zhang, Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy, J. Mater. Process. Technol. 232 (2016a) 100–115 [Google Scholar]
  75. X. Zhang, C. Li, Y. Zhang, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X. Zhang, Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding, Int. J. Adv. Manufactur. Technol. 86 (2016b) 3427–3441 [CrossRef] [Google Scholar]
  76. A. Kumar, S. Ghosh, S. Aravindan, Experimental investigations on surface grinding of silicon nitride subjected to mono and hybrid nanofluids, Ceram. Int. 45 (2019) 17447–17466 [CrossRef] [Google Scholar]
  77. M. Jamil, A.M. Khan, H. Hegab, L. Gong, M. Mia, M.K. Gupta, N. He, Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti-6Al-4V, Int. J. Adv. Manufactur. Technol. 102 (2019) 3895–3909 [CrossRef] [Google Scholar]
  78. S. Gugulothu, V.K. Pasam, Experimental investigation to study the performance of CNT/MoS2 hybrid nanofluid in turning of AISI 1040 steel, Aust. J. Mech. Eng. 20 (2022) 1–12 [Google Scholar]
  79. S. Haghnazari, V. Abedini, Effects of hybrid Al2O3-CuO nanofluids on surface roughness and machining forces during turning AISI 4340, SN Appl. Sci. 3 (2021) 1–14 [Google Scholar]
  80. C.H. Tanmai Sai Geetha, A.K. Dash, B. Kavya, M. Amrita, Analysis of hybrid nanofluids in machining AISI 4340 using minimum quantity lubrication, Mater. Today: Proc. 43 (2021) 579–586 [Google Scholar]
  81. V. Dubey, A.K. Sharma, A short review on hybrid nanofluids in machining processes, Adv. Mater. Process. Technolog. (2022). doi: 10.1080/2374068X.2022.2087315 [Google Scholar]
  82. R.K. Singh, A.K. Sharma, A.R. Dixit, A.K. Tiwari, A. Pramanik, A. Mandal, Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning, J. Clean. Product. 162 (2017) 830–845 [CrossRef] [Google Scholar]
  83. G. Liu, C. Li, Y. Zhang, M. Yang, D. Jia, X. Zhang, S. Guo, R. Li, H. Zhai, Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis, Mater. Manufactur. Process. 33 (2018) 950–963 [Google Scholar]
  84. K. Siva Prasad, S. Rao, D. NageshwaraRao, Application of design of experiments to plasma arc welding process: a review, J. Braz. Soc. Mech. Sci. Eng. 34 (2012) 75–81 [Google Scholar]
  85. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, (Prentice-Hall of India Private Limited, New Delhi, 2013) [Google Scholar]
  86. D.C. Montgomery, Design and Analysis of Experiments, 8th ed. (Wiley, New York, 2013) [Google Scholar]
  87. P. Mathews, Design of Experiments with MINITAB, 1st ed. (New Age International Publishers, 2010) [Google Scholar]
  88. M. Sayuti, A.A.D. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption, J. Clean. Product. 67 (2014) 265–276 [CrossRef] [Google Scholar]
  89. M. Sarikaya, A. Giillii, Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25, J. Clean. Product. 91 (2015) 347–357 [CrossRef] [Google Scholar]
  90. M.K. Gupta, P.K. Sood, V.S. Sharma, Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum quantity lubrication environment, Mater. Manufactur. Process. 31 (2016) 1671–1682 [Google Scholar]
  91. R.V. Rao, D.P. Rai, Optimization of selected casting processes using Jaya algorithm, Mater. Today: Proc. 4 (2017) 11056–11067 [Google Scholar]
  92. R.V. Rao, D.P. Rai, J. Balic, A multi-objective algorithm for optimization of modern machining processes, Eng. Appl. Artific. Intell. 61 (2017) 103–125 [CrossRef] [Google Scholar]
  93. R.V. Rao, D.P. Rai, Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm, J. of Mechanical Science and Technology, 31 (2017a) 2513–2522 [Google Scholar]
  94. R.R. Chakule, S.S. Chaudhari, Experimental study of hardness effects on surface roughness for nanofluid minimum quantity lubrication (NanoMQL) technique using Jaya algorithm, Int. J. Data Netw. Sci. 2 (2018) 71–78 [CrossRef] [Google Scholar]
  95. S. Chaudhari, R. Chakule, P. Talmale, Performance improvement of nanofluid minimum quantity lubrication (Nanofluid MQL) technique in surface grinding by optimization using Jaya algorithm, in Advances in Applied Mechanical Engineering, edited by edited by H. Voruganti, K. Kumar, P. Krishna, X. Jin (Springer Publishers, Singapore, 2020), pp. 809–816 [CrossRef] [Google Scholar]
  96. R.R. Chakule, S.S. Chaudhari, P.S. Talmale, Modelling and optimization of nanocoolant minimum quantity lubrication process parameters for grinding performance, Int. J. Exp. Des. Process Optim. 6 (2021) 333–348 [CrossRef] [Google Scholar]
  97. K. Abhishek, V. Rakesh Kumar, S. Datta, S.S. Mahapatra, Application of Jaya algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA and ICA, Eng. Comput. 33 (2017) 457–475 [CrossRef] [MathSciNet] [Google Scholar]
  98. J. Li, X. Zhang, B. Xu, M. Yuan, Nanofluid research and applications: a review, Int Commun. Heat Mass Transfer. 127 (2021) 105543 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.