Open Access
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 19
Number of page(s) 14
DOI https://doi.org/10.1051/mfreview/2024018
Published online 14 August 2024
  1. M.H. Abidi, N. Ali, H. Ibrahimi, S. Anjum, D. Bajaj, A.N. Siddiquee, A.U. Rehman, T-FSW of dissimilar aerospace grade aluminium alloys: influence of second pass on weld defects Metals, 10 (2020) 525 [Google Scholar]
  2. S.A. Manroo, N.Z. Khan, B. Ahmad, Study on surface modification and fabrication of surface composites of magnesium alloys by friction stir processing: a review, J. Eng. Appl. Sci. 69 (2022) 1–23 [CrossRef] [Google Scholar]
  3. A.H. Karwande, S.S. Rao, Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments, AIP Conf. Proc. 1952 (2018) 020115 [CrossRef] [Google Scholar]
  4. R.A. Gite, P.K. Loharkar, R. Shimpi, Friction stirs welding parameters and application: a review, Mater. Today: Proc. 19 (2019) 361–365 [CrossRef] [Google Scholar]
  5. G. Cam, S. Mistikoglu, Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform. 23 (2014) 1936–1953 [CrossRef] [Google Scholar]
  6. E.T. Akinlabi, R.M. Mahamood, Solid-state welding: friction and friction stir welding processes, Springer International Publishing, New York, NY, USA, 2020 [CrossRef] [Google Scholar]
  7. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, P.J. Withers, Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution, Prog. Mater. Sci. 117 (2021) 100752 [CrossRef] [Google Scholar]
  8. S.K. Das, S. Gain, P. Sahoo, Friction stir welding, Welding Technol. (2021) 1–39 [Google Scholar]
  9. P. Bahemmat, M. Haghpanahi, M.K. Besharati Givi, K. Reshad Seighalani, Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation, Int. J. Adv. Manufactur. Technol. 59 (2012) 939–953 [CrossRef] [Google Scholar]
  10. E.J. Mueller, D.L. Seger, Metal fume fever—a review, J. Emerg. Med. 2 (1985) 271–274 [CrossRef] [Google Scholar]
  11. K.P. Mehta, Sustainability in welding and processing, Innov. Manufactur. Sustain. (2019) 125–145 [CrossRef] [Google Scholar]
  12. N.A. Liyakat, D. Veeman, Improvement of mechanical and microstructural properties of AA 5052-H32 TIG weldment using friction stir processing approach, J. Mater. Res. Technol. 19 (2022) 332–344 [CrossRef] [Google Scholar]
  13. M.A. Wahid, N. Sharma, R. Shandley, Friction stir welding process effects on human health and mechanical properties, Int. J. Forensic Eng. Manag. 1 (2020) 42–52 [CrossRef] [Google Scholar]
  14. K.N. Uday, G. Rajamurugan, Influence of process parameters and its effects on friction stir welding of dissimilar aluminium alloy and its composites − a review, J. Adhes. Sci. Technol. 37 (2023) 767–800 [CrossRef] [Google Scholar]
  15. R. Anand, V.G. Sridhar, Studies on process parameters and tool geometry selecting aspects of friction stir welding − a review, Mater. Today: Proc. 27 (2020) 576–583 [CrossRef] [Google Scholar]
  16. M.S. Mahany, R.R. Abbas, M.M.Z. Ahmed, H. Abdelkader, Influence of tool rotational speed and axial load in friction stir welding (FSW) of high strength aluminum alloys, Int. J. Res. Eng. Technol. 6 (2017) 114–120 [Google Scholar]
  17. A.M. Bayazid, M.M. Heddad, I. Cayiroglu, A review on friction stir welding, parameters, microstructure, mechanical properties, post weld heat treatment and defects, Mater. Sci. Eng. 2 (2018) 116–126 [Google Scholar]
  18. C. Zhang, G. Huang, Y. Cao, Y. Zhu, Q. Liu, On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: effect of rotational speed, J. Manufactur. Process. 37 (2019) 470–487 [CrossRef] [Google Scholar]
  19. M.M. Hasan, M. Ishak, M.R.M. Rejab, Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds, IOP Conf. Ser.: Mater. Sci. Eng. 257 (2017) 012022 [CrossRef] [Google Scholar]
  20. L. Cui, C. Zhang, Y.C. Liu, X.G. Liu, D.P. Wang, H.J. Li, Recent progress in friction stir welding tools used for steels, J. Iron Steel Res. Int. 25 (2018) 477–486 [CrossRef] [Google Scholar]
  21. C. Zhang, G. Huang, Y. Cao, Y. Zhu, Q. Liu, On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: effect of rotational speed, J. Manufactur. Process. 37 (2019) 470–487 [CrossRef] [Google Scholar]
  22. G. Çam, G. İpekoğlu, Recent developments in joining of aluminum alloys, Int. J. Adv. Manufactur. Technol. 91 (2017) 1851–1866 [CrossRef] [Google Scholar]
  23. G. Cam, S. Mistikoglu, Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform. 23 (2014) 1936–1953 [CrossRef] [Google Scholar]
  24. C. Zhang, G. Huang, Y. Cao, Q. Li, L. Niu, Q. Liu, Characterizations of microstructure, crystallographic texture and mechanical properties of dissimilar friction stir welding joints for AA2024 and AA7075 under different tool shoulder end profiles, Mater. Today Commun. 25 (2020) 101435 [CrossRef] [Google Scholar]
  25. B. Anandan, M. Manikandan, Effect of welding speeds on the metallurgical and mechanical property characterization of friction stir welding between dissimilar aerospace grade 7050 T7651-2014A T6 aluminium alloys, Mater. Today Commun. 35 (2023) 106246 [CrossRef] [Google Scholar]
  26. R.S. Kumar, T. Rajasekaran, S. Sivasubramanian, D. Garg, D. Gouda, R. Tiwari, A. Singh, Characteristic study of friction stir welding of aluminium alloy AA7075 using H13 surface hardened tool steel with variable tool pin design, IOP Conf. Ser.: Mater. Sci. Eng. 912 (2020) 032033 [CrossRef] [MathSciNet] [Google Scholar]
  27. M.E. Matarneh, The effect of austenitization treatment temperature on H-13 tool steel's mechanical properties, Int. J. Mech. Appl. 6 (2016) 77–82 [Google Scholar]
  28. D.C. Montgomery, Design and analysis of experiments, John Wiley & Sons, 2017 [Google Scholar]
  29. D. Zlatanovic Labus, S. Balos, J.P. Bergmann, S. Rasche, M. Pecanac, S. Goel, Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheets, Materials 14 (2021) 1157 [CrossRef] [Google Scholar]
  30. M. Mohammadi Sefat, H. Ghazanfari, C. Blais, Friction stir welding of 5052-H18 aluminum alloy: modeling and process parameter optimization, J. Mater. Eng. Perform. 30 (2021) 1838–1850 [CrossRef] [Google Scholar]
  31. A.N. Salah, H. Mehdi, A. Mehmood, A.W. Hashmi, C. Malla, R. Kumar, Optimization of process parameters of friction stir welded joints of dissimilar aluminum alloys AA3003 and AA6061 by RSM, Mater. Today: Proc. 56 (2022) 1675–1683 [CrossRef] [Google Scholar]
  32. C. Guo, Y. Shen, W. Hou, Y. Yan, G. Huang, W. Liu, Effect of groove depth and plunge depth on microstructure and mechanical properties of friction stir butt weldedAA6061-T6, J. Adhes. Sci. Technol. 32 (2018) 2709–2726 [CrossRef] [Google Scholar]
  33. J.A. Hamed, Effect of welding heat input and post-weld aging time on microstructure and mechanical properties in dissimilar friction stir welded AA7075-AA5086, Trans. Nonferrous Metal Soc. China 27 (2017) 1707–1715 [CrossRef] [Google Scholar]
  34. Kalemba-Rec, M. Kopyscianski, D. Miara et al., Effect of process parameters on mech- anical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys, Int. J. Adv. Manuf. Technol. 97 (2018) 2767–2779 [CrossRef] [Google Scholar]
  35. R.I. Rodriguez, J.B. Jordon, P.G. Allison et al., Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys, Mater. Des. 83 (2015) 60–65 [CrossRef] [Google Scholar]
  36. R. Khajeh, H.R. Jafarian, S.H. Seyedein, R. Jabraeili, A.R. Eivani, N. Park, A. Heidarzadeh, Microstructure, mechanical and electrical properties of dissimilar friction stir welded 2024 aluminum alloy and copper joints, J. Mater. Res. Technol. 14 (2021) 1945–1957 [CrossRef] [Google Scholar]
  37. X.C. Liu, Y.Q. Zhen, Y.F. Sun, Z.K. Shen, H.Y. Chen, G.U.O. Wei, W.Y. Li, Local inhomogeneity of mechanical properties in stir zone of friction stir welded AA1050 aluminum alloy, Trans. Nonferrous Metals Soc. China 30 (2020) 2369–2380 [CrossRef] [Google Scholar]
  38. Datta, A. Shrivastava, N. Mandal, H. Roy, S.S. Chakraborty, A comparative investigation of butt friction stir welding of aluminium alloys, AA 1100 and AA 7075, with AISI 304 stainless steel, Weld. World 67 (2023) 1449–1465 [CrossRef] [Google Scholar]
  39. M. Vahdati, M. Moradi, M. Shamsborhan, Modeling and optimization of the yield strength and tensile strength of Al7075 butt joint produced by FSW and SFSW using RSM and desirability function method, Trans. Indian Inst. Metals 73 (2020) 2587–2600 [CrossRef] [Google Scholar]
  40. Forcellese, M. Simoncini, G. Casalino, Influence of process parameters on the vertical forces generated during friction stir welding of AA6082-T6 and on the mechanical properties of the joints, Metals 7 (2017) 350 [CrossRef] [Google Scholar]
  41. M. Ghosh, M.M. Husain, K. Kumar et al., Friction stir-welded dissimilar aluminum alloys: microstructure, mechanical properties, and physical state, J. Mater. Eng. Perform. 22 (2013) 3890–3901 [CrossRef] [Google Scholar]
  42. M. Saeidi, B. Manafi, M.B. Givi et al., Mathematical modeling and optimization of friction stir welding process parameters in AA5083 and AA7075 aluminum alloy joints, Proc. Inst. Mech. Eng. B 230 (2016) 1284–1294 [CrossRef] [Google Scholar]
  43. Z. Zhu, H. Zhang, T. Yu et al., A finite element model to simulate defect formation during friction stir welding, Metals 7 (2017) 256 [CrossRef] [Google Scholar]
  44. Bhojan, N. Senthilkumar, B. Deepanraj, Parametric influence of friction stir welding on cast Al6061/20% SiC/2% MoS2 MMC mechanical properties, Appl. Mech. Mater. 852 (2016) 297–303 [CrossRef] [Google Scholar]
  45. P. Avinash, M. Manikandan, N. Arivazhagan, K.D. Ramkumar, S. Narayanan, Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys, Proc. Eng. 75 (2014) 98–102 [CrossRef] [Google Scholar]
  46. P.S. De, R.S. Mishra, Friction stir welding of precipitation strengthened aluminium alloys: scope and challenges, Sci. Technol. Welding Joining 16 (2011) 343–347 [CrossRef] [Google Scholar]
  47. T. Singh, S.K. Tiwari, D.K. Shukla, Preparation of aluminum alloy-based nanocomposites via friction stir welding, Mater. Today Proc. 27 (2020) 2562–2568 [CrossRef] [Google Scholar]
  48. Sharma, V.M. Sharma, S. Mewar et al., Friction stir processing of Al6061- SiC −graphite hybrid surface composites, Mater. Manuf. Process. 33 (2018) 795–804 [CrossRef] [Google Scholar]
  49. D.F. Scialpi, P. Cuomo, P.D. Summa, Micro-friction stir welding of 2024–6082 aluminum alloys, Weld Int. 21 (2008) 16–22 [CrossRef] [Google Scholar]
  50. T. Singh, S.K. Tiwari, D.K. Shukla, Novel method of nanoparticle addition for friction stir welding of aluminium alloy, Adv. Mater. Process. Technolog. 8 (2022) 1160–1172 [Google Scholar]
  51. V. Haribalaji, S. Boopathi, M.M. Asif, Optimization of friction stir welding process to join dissimilar AA2014 and AA7075 aluminum alloys, Mater. Today: Proc. 50 (2022) 2227–2234 [CrossRef] [Google Scholar]
  52. M. Ryan, S. Suresh, K. Kumar, Microstructural investigations on friction stir welded aluminium alloy, J. Ind. Pollution Control 33 (2017) 1772–1774 [Google Scholar]
  53. Y. Yan, H. Li, J. Zhang, N. Kong, The effect of initial annealing microstructures on the forming characteristics of Ti-4Al-2V, Titanium Alloy Mater. 576 (2019) 1–12 [Google Scholar]
  54. H.J. Zhao, B.Y. Wang, G. Liu, L. Yang, W.C. Xiao, Effect of vacuum annealing on microstructure and mechanical properties ofTA15 titanium alloy sheets, Trans. Nonferr. Metal Soc. China 25 (2015) 1881–1888 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.