Open Access
Issue |
Manufacturing Rev.
Volume 11, 2024
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/mfreview/2024017 | |
Published online | 15 August 2024 |
- U. Sellgren, S. Andersson, The concept of functional surfaces as carriers of interactive properties (2005), pp. 15–18 [Google Scholar]
- L. Nagdeve, V.K. Jain, J. Ramkumar, Nanofinishing of freeform/sculptured surfaces: state-of-the-art, Manufacturing Rev. 5 (2018), doi: 10.1051/mfreview/2018005 [Google Scholar]
- M. Ramezani, Z. Mohd Ripin, T. Pasang, C.-P. Jiang, Surface engineering of metals: techniques, characterizations and applications, Metals 13 (2023) [Google Scholar]
- M. Vishnoi, P. Kumar, Q. Murtaza, Surface texturing techniques to enhance tribological performance: a review, Surf. Interfaces 27 (2021) 101–463 [Google Scholar]
- Z.-W. Zhong, Advanced polishing, grinding and finishing processes for various manufacturing applications: a review, Mater. Manufactur. Process. 35 (2020) 1279–1303 [CrossRef] [Google Scholar]
- N.T. Duy, D.H. Tien, P.T.T. Thoa, A new environment-friendly magnetorheological finishing and fuzzy grey relation analysis in Ti-6Al-4V alloy polishing, Manufactur. Rev. 9 (2022), doi: 10.1051/mfreview/2022013 [Google Scholar]
- L.A. Duc, P.M. Hieu, N. Minh Quang, Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials, Manufacturing Rev. 10 (2023), doi: 10.1051/mfreview/2023006 [Google Scholar]
- T.S. Bedi, A.K. Singh, Magnetorheological methods for nanofinishing – a review, Particul. Sci. Technol. 34 (2016) 412–422 [CrossRef] [Google Scholar]
- Y. Yang et al., A magnetic abrasive finishing process with an auxiliary magnetic machining tool for the internal surface finishing of a thick-walled tube, Machines 10 (2022) [Google Scholar]
- A. Sidpara, M. Das, V.K. Jain, Rheological characterization of magnetorheological finishing fluid, Mater. Manufactur. Process. 24 (2009) 1467–1478 [CrossRef] [Google Scholar]
- K. Saraswathamma, S. Jha, V.R. Paruchuri, Rheological behaviour of magnetorheological polishing fluid for Si polishing, Mater. Today: Proc. 4 (2017) 1478–1491 [CrossRef] [Google Scholar]
- A. Muhammad, X. Yao, C. Deng, Review of magnetorheological (MR) fluids and its applications in vibration control, J. Marine Sci. Appl 5 (2006) 17–29 [CrossRef] [Google Scholar]
- R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, S. Lambert, Magnetorheological finishing for removing surface and subsurface defects of fused silica optics, Opt. Eng. 53 (2014) 092010 [CrossRef] [Google Scholar]
- A. Makridis, N. Maniotis, D. Papadopoulos, P. Kyriazopoulos, M. Angelakeris, A novel two-stage 3D-printed Halbach array-based device for magneto-mechanical applications, Magnetochemistry 10 (2024) [Google Scholar]
- M.G. Lee, S.Q. Lee, D.-G. Gweon, Analysis of Halbach magnet array and its application to linear motor, Mechatronics 14 (2004) 115–128 [CrossRef] [Google Scholar]
- A. Sarwar, A. Nemirovski, B. Shapiro, Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles, J. Magn. Magn. Mater. 324 (2012) 742–754 [CrossRef] [Google Scholar]
- M. Hoyos, L. Moore, P.S. Williams, M. Zborowski, The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species, J. Magn. Magn. Mater. 323 (2011) 1384–1388 [CrossRef] [Google Scholar]
- Z.Q. Zhu, D. Howe, Halbach permanent magnet machines and applications: a review, IEE Proc. Electric Power Appl. 148 (2001) 299–308 [CrossRef] [Google Scholar]
- M. Tanase et al., Magnetic alignment of fluorescent nanowires, Nano Lett. 1 (2001) 155–158 [CrossRef] [Google Scholar]
- D.H. Tien, N.D. Trinh, Novel hybrid chemical magnetorheological fluid for polishing Ti-6Al–4V alloy, Mater. Manufactur. Process. 1–18 [Google Scholar]
- M. Xie, Z. An, J. Zhuang, Design an d experimental research of dynamic magnetic field device based on Halbach array in magnetorheological polishing, Int. J. Adv. Manufactur. Technol. 120 (2022) 5807–5822 [CrossRef] [Google Scholar]
- H. Li, T. Li, End-effect magnetic field analysis of the Halbach array permanent magnet spherical motor, IEEE Trans. Magn. 54 (2018) 1–9 [Google Scholar]
- S. Feng, S. Yong, D. Yifan, P. Xiaoqiang, L. Shengyi, Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics, Opt. Eng. 52 (2013) 075104 [CrossRef] [MathSciNet] [Google Scholar]
- C. Qian, Y. Tian, S. Ahmad, Z. Ma, L. Li, Z. Fan, Theoretical and experimental investigation on magnetorheological shear thickening polishing force using multi-polecoupling magnetic field, J. Mater. Process. Technol. 328 (2024) 118–414 [Google Scholar]
- D. Cubero, L. Marmugi, F. Renzoni, Exploring the limits of magnetic field focusing: simple planar geometries, Res. Phys. 19 (2020) 103562 [Google Scholar]
- S.N. Shafrir et al., Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics, Appl. Opt. 48 (2009) 6797–6810 [CrossRef] [Google Scholar]
- J. Pan, Z. Chen, Q. Yan, Study on the rheological properties and polishing properties of SiO2@CI composite particle for sapphire wafer, Smart Mater. Struct. 29 (2020) 114003 [CrossRef] [Google Scholar]
- Q. Zhai, W. Zhai, B. Gao, Y. Shi, X. Cheng, Synthesis and characterization of nanocomposite Fe3O4/SiO2 core-shell abrasives for high-efficiency ultrasound-assisted magneto-rheological polishing of sapphire, Ceramics Int. 47 (2021) 31681–31690 [CrossRef] [Google Scholar]
- H. Guo, Y. Wu, D. Lu, M. Fujimoto, M. Nomura, Effects of pressure and shear stress on material removal rate in ultra-fine polishing of optical glass with magnetic compound fluid slurry, J. Mater. Process. Technol. 214 (2014) 2759–2769 [CrossRef] [Google Scholar]
- J. Liu, X. Li, Y. Zhang, D. Tian, M. Ye, C. Wang, Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress, Appl. Surf. Sci. 504 (2020) 144492 [CrossRef] [Google Scholar]
- E.D. Jessica, J.R. Henry, A.K. Irina, M.S. John, D.J. Stephen, Polishing PMMA and other optical polymers with magnetorheological finishing, Proc. SPIE 5180 (2003) 123–134 [Google Scholar]
- C. Miao, S.N. Shafrir, J.C. Lambropoulos, J. Mici, S.D. Jacobs, Shear stress in magnetorheological finishing for glasses, Appl. Opt. 48 (2009) 2585–2594 [NASA ADS] [CrossRef] [Google Scholar]
- L. Xiaojuan, J. Guoyuan, Z. Liping, Y. Yu-xiang, L. Xiangnong, Synthesis and properties of Fe3O4 nanoparticles by sol-vothermal method using iron(III) acetylacetonate, Glass Phys. Chem. 37 (2011) [Google Scholar]
- I. Nyiro-Kosa, D. Nyinagy, M. Pósfai, Size and shape control of precipitated magnetite nanoparticles, Eur. J. Mineral. 21 (2009) 293–302 [CrossRef] [Google Scholar]
- Y.Y. Zheng et al., Fabrication of shape controlled Fe3O4 nanostructure, Mater. Character. 61 (2010) 489–492 [CrossRef] [Google Scholar]
- K. Mandel, C. Kolb, M. Straßer, S. Dembski, G. Sextl, Size controlled iron oxide nano octahedra obtained via sonochemistry and natural ageing, Coll. Surf. A 457 (2014) [Google Scholar]
- N. Duy Trinh, N.T. Nguyen, N. Minh Quang, T. Pham, L. Anh Duc, Particulate science and technology application of magnetic liquid slurries and fuzzy grey analysis in polishing nickel-phosphorus coated SKD11 steel Application of magnetic liquid slurries and fuzzy grey analysis in polishing nickel-phosphorus coated SKD11 steel, Particul. Sci. Technol. 39 (2021) [Google Scholar]
- J.S. Choi, J. Yoo, Design of a Halbach magnet array based on optimization techniques, IEEE Trans. Magnetics 44 (2008) 2361–2366 [CrossRef] [Google Scholar]
- J. O’Connell, W. Robertson, B. Cazzolato, Optimization of the magnetic field produced by frustum permanent magnets for single magnet and planar Halbach array configurations, IEEE Trans. Magn. (2021) 1–1 [CrossRef] [Google Scholar]
- E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Application of Sapphire, in Sapphire: Material, Manufacturing, Applications, edited by V. Pishchik, L.A. Lytvynov, E.R. Dobrovinskaya (Springer US, Boston, MA, 2009), pp. 1–54 [Google Scholar]
- Q. Zhai, W. Zhai, B. Gao, S. Yiqing, X. Cheng, Synthesis and characterization of nanocomposite Fe3O4/SiO2 core-shell abrasives for high-efficiency ultrasound-assisted magneto-rheological polishing of sapphire, Ceram. Int. 47 (2021) [Google Scholar]
- E. Vovk, A.T. Budnikov, M. Dobrotvorskaya, S.I. Krivonogov, D.A.Ya, Mechanism of the Interaction between Al2O3 and SiO2 during the chemical-mechanical polishing of sapphire with silicon dioxide, J. Surface Invest. X-ray Synchrot. Neutron Tech. 6 (2012) 115–121 [CrossRef] [Google Scholar]
- Y. Peiran, W. Shizhu, A generalized reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication, J. Tribol. 112 (1990) 631–636 [CrossRef] [Google Scholar]
- C. Kumari, S.K. Chak, Study on influential parameters of hybrid AFM processes: a review, Manufactur. Rev. 6 (2019), doi: 10.1051/mfreview/2019022 [Google Scholar]
- C. Kumari, S.K. Chak, A review on magnetically assisted abrasive finishing and their critical process parameters, Manufactur. Rev. 5 (2018), doi: 10.1051/mfreview/2018010 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.