Open Access
Review
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 17
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2024015
Published online 29 July 2024
  1. M.-L. Lee, X. Liang, B. Hu, G. Onel, S. Behdad, M. Zheng, A review of prospects and opportunities in disassembly with human-robot collaboration, J. Manuf. Sci. Eng. (2023) 1–26 [Google Scholar]
  2. Green Manufacturing: Fundamentals and Applications, Springer US, Boston, MA, 2013 [Google Scholar]
  3. M. Caterino, M. Fera, R. Macchiaroli, D.T. Pham, Cloud remanufacturing: remanufacturing enhanced through cloud technologies, J. Manuf. Syst. 64 (2022) 133–148 [CrossRef] [Google Scholar]
  4. P. Kopacek, B. Kopacek, Intelligent, flexible disassembly, Int. J. Adv. Manuf. Technol. 30 (2006) 554–560 [CrossRef] [Google Scholar]
  5. H. Poschmann, H. Brüggemann, D. Goldmann, Disassembly 4.0: a review on using robotics in disassembly tasks as a way of automation, Chem. Ing. Tech. 92 (2020) 341–359 [CrossRef] [Google Scholar]
  6. G. Foo, S. Kara, M. Pagnucco, Challenges of robotic disassembly in practice, Proc. CIRP 105 (2022) 513–518 [CrossRef] [Google Scholar]
  7. S. Hjorth, D. Chrysostomou, Human-robot collaboration in industrial environments: a literature review on non-destructive disassembly, Robot. Comput. Integr. Manuf. 73 (2022) 102208 [CrossRef] [Google Scholar]
  8. J. Xiao, J. Gao, N. Anwer, B. Eynard, Multi-agent reinforcement learning method for disassembly sequential task optimization based on human-robot collaborative disassembly in electric vehicle battery recycling, J. Manuf. Sci. Eng. Trans. ASME 145 (2023) 121001 [CrossRef] [Google Scholar]
  9. J. Liu, Z. Xu, H. Xiong, Q. Lin, W. Xu, Z. Zhou, Digital twin-driven robotic disassembly sequence dynamic planning under uncertain missing condition, IEEE Trans. Ind. Inf. 19 (2023) 11846–11855 [CrossRef] [Google Scholar]
  10. A. Keshvarparast, D. Battini, O. Battaia, A. Pirayesh, Collaborative robots in manufacturing and assembly systems: literature review and future research agenda, Springer, USA, 2023 [Google Scholar]
  11. J.L. Rickli, J.A. Camelio, Partial disassembly sequencing considering acquired end-of-life product age distributions, Int. J. Prod. Res. 52 (2014) 7496–7512 [CrossRef] [Google Scholar]
  12. B. Zhu, U. Roy, Ontology-based disassembly information system for enhancing disassembly planning and design, Int. J. Adv. Manuf. Technol. 78 (2015) 1595–1608 [CrossRef] [Google Scholar]
  13. G. Tian, M.C. Zhou, P. Li, Disassembly sequence planning considering fuzzy component quality and varying operational cost, IEEE Trans. Autom. Sci. Eng. 15 (2018) 748–760 [CrossRef] [Google Scholar]
  14. Y. Laili, F. Ye, Y. Wang, L. Zhang, Interference probability matrix for disassembly sequence planning under uncertain interference, J. Manuf. Syst. 60 (2021) 214–225 [CrossRef] [Google Scholar]
  15. W. Meng, X. Zhang, Optimization of remanufacturing disassembly line balance considering multiple failures and material hazards, Sustainable 12 (2020). doi: 10.3390/SU12187318 [Google Scholar]
  16. M. Liu, X. Liu, F. Chu, F. Zheng, C. Chu, Robust disassembly line balancing with ambiguous task processing times, Int. J. Prod. Res. 58 (2020) 5806–5835 [CrossRef] [Google Scholar]
  17. X. Zhang et al., Application and planning of an energy-oriented stochastic disassembly line balancing problem, Environ. Sci. Pollut. Res. (2023) 0123456789, doi: 10.1007/s11356-023- 27288-4. [Google Scholar]
  18. J. Liu et al., Equipment disassembly and maintenance in an uncertain environment based on a peafowl optimization algorithm, Processes 11 (2023) 1–17 [Google Scholar]
  19. J. Xiao, C. Jiang, B. Wang, A review on dynamic recycling of electric vehicle battery: disassembly and echelon utilization, Batteries 9 (2023) 57 [CrossRef] [Google Scholar]
  20. H. Yin, J. Xiao, G. Wang, Human-robot collaboration re-manufacturing for uncertain disassembly in retired battery recycling, in 2022 5th World Conf. Mech. Eng. Intell. Manuf. WCMEIM 2022 (2022) pp. 595–598, doi: 10.1109/WCME IM56910. 2022.10021388 [CrossRef] [Google Scholar]
  21. E. Rodriguez, R. Bonnard, A. Alvares, Progresses in the development of a STEP-NC compliant additive manufacturing system, Produção e Desenvolv. 4 (2018) 39–53 [CrossRef] [Google Scholar]
  22. L. Zhu, Z. Zhang, Y. Wang, N. Cai, On the end-of-life state oriented multi-objective disassembly line balancing problem, J. Intell. Manuf. 31 (2020) 1403–1428 [CrossRef] [Google Scholar]
  23. T. Yu, J. Huang, Q. Chang, Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning, J. Manuf. Syst. 60 (2021) 487–499 [CrossRef] [Google Scholar]
  24. Y. Laili, F. Tao, D.T. Pham, Y. Wang, L. Zhang, Robotic disassembly re-planning using a two-pointer detection strategy and a super-fast bees algorithm, Robot. Comput. Integr. Manuf. 59 (2019) 130–142 [CrossRef] [Google Scholar]
  25. M.L. Lee, S. Behdad, X. Liang, M. Zheng, Task allocation and planning for product disassembly with human-robot collaboration, Robot. Comput. Integr. Manuf. 76 (2022) 102306 [CrossRef] [Google Scholar]
  26. J. Liu, Z. Zhou, D.T. Pham, W. Xu, C. Ji, Q. Liu, Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete Bees algorithm in remanufacturing, Robot. Comput. Integr. Manuf. 61 (2020) 101829 [CrossRef] [Google Scholar]
  27. X.F. Zhang, S.Y. Zhang, Product cooperative disassembly sequence planning based on branch-and-bound algorithm, Int. J. Adv. Manuf. Technol. 51 (2010) 1139–1147 [CrossRef] [Google Scholar]
  28. J. Liu, Z. Zhou, D. T. Pham, W. Xu, C. Ji, Q. Liu, Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete Bees algorithm in remanufacturing, Robot. Comput. Integr. Manuf. 61 (2020) 101829 [CrossRef] [Google Scholar]
  29. J. Gao, G. Wang, J. Xiao, P. Zheng, E. Pei, Partially observable deep reinforcement learning for multi-agent strategy optimization of human-robot collaborative disassembly: a case of retired electric vehicle battery, Robot. Comput. Integr. Manuf. 89 (2024) 102775 [CrossRef] [Google Scholar]
  30. Y. Yin, P. Zheng, C. Li, L. Wang, A state-of-the-art survey on augmented reality-assisted digital twin for futuristic human-centric industry transformation, Robot. Comput. Integr. Manuf. 81 (2023) 1–21 [Google Scholar]
  31. J. Xiao, N. Anwer, W. Li, B. Eynard, C. Zheng, Dynamic Bayesian network-based disassembly sequencing optimization for electric vehicle battery, CIRP J. Manuf. Sci. Technol. 38 (2022) 824–835 [CrossRef] [Google Scholar]
  32. A. Kumar Singh, M.K. Tiwari, S.K. Mukhopadhyay, Modelling and planning of the disassembly processes using an enhanced expert Petri net, Int. J. Prod. Res. 41 (2003) 3761–3792 [CrossRef] [Google Scholar]
  33. R. Edmunds, M. Kobayashi, M. Higashi, Using constraint-satisfaction to optimise disassembly sequences generated from AND/OR information, Int. J. Prod. Res. 50 (2012) 4105–4126 [CrossRef] [Google Scholar]
  34. S.T. Puente-Mendez, F. Torres-Medina, J. Pomares-Baeza, Product disassembly scheduling using graph models, Environmentally Conscious Manufacturing II. SPIE. 4569 (2002) 63–70 [Google Scholar]
  35. M. Turowski, M. Morgan, Y. Tang, Disassembly line design with uncertainty, in 2005 IEEE International Conference on Systems, Man and Cybernetics (2005) pp. 954–959 [Google Scholar]
  36. M. Turowski, Y. Tang, M. Morgan, Analysis of an adaptive fuzzy system for disassembly process planning, in 2005 IEEE International Symposium on Electronics and the Environment, 2005 (2005) pp. 249–254 [CrossRef] [Google Scholar]
  37. Y. Tang, M.C. Zhou, M. Gao, Fuzzy-petri-net-based disassembly planning considering human factors, IEEE Trans. Syst. Man, Cybern. A 36 (2006) 718–725 [CrossRef] [Google Scholar]
  38. Y. Tang, A memory fuzzy learning for uncertainty management in disassembly, in Proc. 2006 IEEE Int. Conf. Networking, Sens. Control. ICNSC'06 (2006) pp. 522–527 [Google Scholar]
  39. Y. Tian, T.Y. Wang, B.H. Ding, G.Y. He, H.J. Zheng, Research on modularization fuzzy petri net of disassembly system, in EM (2009) pp. 822–826 [CrossRef] [Google Scholar]
  40. J.P.B. Santiago Puente Mendez, F. Torres Medina, Product disassembly scheduling using graph models, in Proc. SPIE 4569, Environmentally Conscious Manufacturing II (2002). p. 4569 [Google Scholar]
  41. G. Tian, Y. Ren, Y. Feng, M.C. Zhou, H. Zhang, J. Tan, Modeling and planning for dual-objective selective disassembly using and/or graph and discrete artificial bee colony, IEEE Trans. Ind. Inform. 15 (2019) 2456–2468 [CrossRef] [MathSciNet] [Google Scholar]
  42. B. Zhu, M.I. Sarigecili, U. Roy, Disassembly information model incorporating dynamic capabilities for disassembly sequence generation, Robot. Comput. Integr. Manuf. 29 (2013) 396–409 [CrossRef] [Google Scholar]
  43. F. Ye, J. Perrett, L. Zhang, Y. Laili, Y. Wang, A self-evolving system for robotic disassembly sequence planning under uncertain interference conditions, Robot. Comput. Integr. Manuf. 78 (2022) 102392 [CrossRef] [Google Scholar]
  44. K. Meng, G. Xu, X. Peng, K. Youcef-Toumi, J. Li, Intelligent disassembly of electric-vehicle batteries: a forward-looking overview, Resour. Conserv. Recycl. 182 (2022) 106207 [CrossRef] [Google Scholar]
  45. A. Billard, D. Kragic, Trends and challenges in robot manipulation, Science (80-) 364 (2019) eaat8414 [CrossRef] [Google Scholar]
  46. G. Caiza, C.A. Garcia, J.E. Naranjo, M.V. Garcia, Flexible robotic teleoperation architecture for intelligent oil fields, Heliyon 6 (2020) e03833 [CrossRef] [Google Scholar]
  47. A. Weigl, Requirements for robot assisted disassembly of not appropriately designed electronic products: lessons from first studies, in 1994 IEEE International Symposium on Electronics and The Environment (1994) pp. 337–342 [CrossRef] [Google Scholar]
  48. K. Hohm, H.M. Hofstede, H. Tolle, Robot assisted disassembly of electronic devices, IEEE Int. Conf. Intell. Robot. Syst. 2 (2000) 1273–1278 [Google Scholar]
  49. K. Wegener, W.H. Chen, F. Dietrich, K. Dröder, S. Kara, Robot assisted disassembly for the recycling of electric vehicle batteries, Procedia CIRP 29 (2015) 716–721 [CrossRef] [Google Scholar]
  50. T. Tolio et al., Design, management and control of demanufacturing and remanufacturing systems, CIRP Ann. − Manuf. Technol. 66 (2017) 585–609 [CrossRef] [Google Scholar]
  51. R. Bogue, Robots in recycling and disassembly, Ind. Robot Int. J. Robot. Res. Appl. 46 (2019) 461–466 [CrossRef] [Google Scholar]
  52. A. Ajoudani, A.M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, O. Khatib, Progress and prospects of the human-robot collaboration, Auton. Robots 42 (2018) 957–975 [CrossRef] [Google Scholar]
  53. Q. Liu, Z. Liu, W. Xu, Q. Tang, Z. Zhou, D. Truong, Human-robot collaboration in disassembly for sustainable manufacturing, Int. J. Prod. Res. 57 (2019) 4027–4044 [Google Scholar]
  54. Z. Liu, Deep learning-based human motion prediction considering context awareness for human-robot collaboration in manufacturing, Proc. CIRP 83 (2019) 272–278 [CrossRef] [Google Scholar]
  55. M.L. Lee, S. Behdad, X. Liang, M. Zheng, Disassembly sequence planning considering human-robot collaboration, Proc. Am. Control Conf. 2020-July, no. 5 (2020) pp. 2438–2443 [CrossRef] [Google Scholar]
  56. M.L. Lee, S. Behdad, X. Liang, M. Zheng, A real-time receding horizon sequence planner for disassembly in a human-robot collaboration setting, in 2020 Int. Symp. Flex. Autom. ISFA 2020 (2020), doi: 10.1115/ISFA2020-9657 [Google Scholar]
  57. M.L. Lee, W. Liu, S. Behdad, X. Liang, M. Zheng, Robot-assisted disassembly sequence planning with real-time human motion prediction, IEEE Trans. Syst. Man. Cybern. Syst. 53 (2023) 438–450 [CrossRef] [Google Scholar]
  58. Y. Ding, W. Xu, Z. Liu, Z. Zhou, D.T. Pham, Robotic task oriented knowledge graph for human-robot collaboration in disassembly, Proc. CIRP 83 (2019) 105–110 [CrossRef] [Google Scholar]
  59. S. Tian, X. Liang, M. Zheng, An optimization-based human behavior modeling and prediction for human-robot collaborative disassembly, Proc. Am. Control Conf. (2023) pp. 3356–3361 [Google Scholar]
  60. W. Xu, Q. Tang, J. Liu, Z. Liu, Z. Zhou, D.T. Pham, Disassembly sequence planning using discrete Bees algorithm for human-robot collaboration in remanufacturing, Robot. Comput. Integr. Manuf. 62 (2020) 101860 [CrossRef] [Google Scholar]
  61. X. Guo et al., Human-robot collaborative disassembly line balancing problem with stochastic operation time and a solution via multi-objective shuffled frog leaping algorithm, IEEE Trans. Autom. Sci. Eng. (2023) 1–12 [Google Scholar]
  62. G. Wang, J. Gao, J. Xiao, Optimal strategy of disassembly process in electric vehicle battery based on human-machine collaboration re-manufacturing, 2023 9th Int. Conf. Mechatronics Robot. Eng. ICMRE 2023 (2023) pp. 174–179 [CrossRef] [Google Scholar]
  63. E.A. Lee, Cyber physical systems: design challenges (2008) [Google Scholar]
  64. P. Kopacek, Trends in production automation, IFAC-PapersOnLine 52 (2019) 509–512 [CrossRef] [Google Scholar]
  65. R. Alguliyev, Y. Imamverdiyev, L. Sukhostat, Cyber-physical systems and their security issues, Comput. Ind. 100 (2018) 212–223 [CrossRef] [Google Scholar]
  66. A. Hahn, R.K. Thomas, I. Lozano, A. Cardenas, A multi-layered and kill-chain based security analysis framework for cyber-physical systems, Int. J. Crit. Infrastruct. Prot. 11 (2015) 39–50 [CrossRef] [Google Scholar]
  67. N. Nikolakis, K. Sipsas, S. Makris, A cyber-physical context-aware system for coordinating human-robot collaboration, Proc. CIRP 72 (2018) 27–32 [CrossRef] [Google Scholar]
  68. A. Filipescu et al., Modeling and control an A/DT served by an ACPS based on SCADA, Industry 4.0 and 5.0, IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2023 (2023) pp. 1–8 [Google Scholar]
  69. J.P.J. Prioli, J.L. Rickli, Collaborative robot based architecture to train flexible automated disassembly systems for critical materials, Proc. Manuf. 51 (2020) 46–53 [Google Scholar]
  70. J. Zhou, Y. Zhou, B. Wang, J. Zang, Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing, Engineering 5 (2019) 624–636 [CrossRef] [Google Scholar]
  71. S. Lou, R. Tan, Y. Zhang, C. Lv, Human-robot interactive disassembly planning in Industry 5.0, IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM (2023) pp. 891–895 [Google Scholar]
  72. C.S.A. Assuad, T. Leirmo, K. Martinsen, Proposed framework for flexible de- and remanufacturing systems using cyber-physical systems, additive manufacturing, and digital twins, Proc. CIRP 112 (2022) 226–231 [CrossRef] [Google Scholar]
  73. N. Nikolakis, A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace, Robot. Comput. Integr. Manuf. 56 (2019) 233–243 [CrossRef] [Google Scholar]
  74. N. Almasarwah, E. Abdelall, M. Saraireh, S. Ramadan, Human-Cyber-Physical Disassembly Workstation 5.0 for Sustainable Manufacturing, 2022 Int. Conf. Emerg. Trends Comput. Eng. Appl. ETCEA 2022 − Proc. (2022) pp. 1–5 [Google Scholar]
  75. G. Ferrer, S.K. Heath, N. Dew, An RFID application in large job shop remanufacturing operations, Int. J. Prod. Econ. 133 (2011) 612–621 [CrossRef] [Google Scholar]
  76. M.M.L. Chang, Approaches and challenges in product disassembly planning for sustainability, Proc. CIRP 60 (2017) 506–511 [CrossRef] [Google Scholar]
  77. J. Wessel, A. Turetskyy, O. Wojahn, C. Herrmann, S. Thiede, Tracking and tracing for data mining application in the lithium-ion battery production, Proc. CIRP 93 (2020) 162–167 [CrossRef] [Google Scholar]
  78. A.K. Gulivindala, M.V.A.R. Bahubalendruni, R. Chandrasekar, E. Ahmed, M.H. Abidi, A. Al-Ahmari, Automated disassembly sequence prediction for industry 4.0 using enhanced genetic algorithm, Comput. Mater. Contin. 69 (2021) 2531–2548 [Google Scholar]
  79. P.K.R. Maddikunta, G. Srivastava, T.R. Gadekallu, N. Deepa, P. Boopathy, Predictive model for battery life in IoT networks, IET Intell. Transp. Syst. 14 (2020) 1388–1395 [CrossRef] [Google Scholar]
  80. A.D. Joshi, S.M. Gupta, Evaluation of design alternatives of End-Of-Life products using internet of things, Int. J. Prod. Econ. 208 (2019) 281–293 [CrossRef] [Google Scholar]
  81. R. Sommerville, J. Shaw-Stewart, V. Goodship, N. Rowson, E. Kendrick, A review of physical processes used in the safe recycling of lithium ion batteries, Sustain. Mater. Technol. 25 (2020) e00197 [Google Scholar]
  82. O. Ondemir, S.M. Gupta, Quality management in product recovery using the Internet of Things: an optimization approach, Comput. Ind. 65 (2014) 491–504 [CrossRef] [Google Scholar]
  83. H.-C. Yi, J.W. Park, Design and implementation of an end-of-life vehicle recycling center based on IoT (Internet of Things) in Korea, Proc. CIRP 29 (2015) 728–733 [CrossRef] [Google Scholar]
  84. Y. Zhang et al., The ‘Internet of Things’ enabled real-time scheduling for remanufacturing of automobile engines, J. Clean. Prod. 185 (2018) 562–575 [CrossRef] [Google Scholar]
  85. K. Xia, L. Gao, W. Li, L. Wang, K.-M. Chao, A Q-learning based selective disassembly planning service in the cloud based remanufacturing system for WEEE (2014), doi: 10.1115/MSEC2014-4008 [Google Scholar]
  86. H. Jiang, J. Yi, S. Chen, X. Zhu, A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly, J. Manuf. Syst. 41 (2016) 239–255 [CrossRef] [Google Scholar]
  87. F. Mancusi, A cloud-aided remanufacturing framework to assess the relative complexity, IFAC-PapersOnLine 55 (2022) 1025–1030 [CrossRef] [Google Scholar]
  88. T.F. Go, D.A. Wahab, M.N.A. Rahman, R. Ramli, A. Hussain, Genetically optimised disassembly sequence for automotive component reuse, Expert Syst. Appl. 39 (2012) 5409–5417 [CrossRef] [Google Scholar]
  89. M. Kheder, M. Trigui, N. Aifaoui, Disassembly sequence planning based on a genetic algorithm, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229 (2015) 2281–2290 [CrossRef] [Google Scholar]
  90. H.-E. Tseng, S.-C. Lee, Disassembly sequence planning using interactive genetic algorithms, ICNC-FSKD 2018-14th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov. (2018) pp. 77–84 [Google Scholar]
  91. C. Lu, H.Z. Huang, B. Zheng, J.Y.H. Fuh, Y.S. Wong, An Ant colony optimization approach to disassembly planning, in 2008 Int. Conf. Apperceiving Comput. Intell. Anal. ICACIA 2008 (2008) pp. 81–84 [Google Scholar]
  92. S.M. McGovern S.M. Gupta, Ant colony optimization for disassembly sequencing with multiple objectives, Int. J. Adv. Manuf. Technol. 30 (2006) 481–496 [CrossRef] [Google Scholar]
  93. B. Hu, Y. Feng, H. Zheng, J. Tan, Sequence planning for selective disassembly aiming at reducing energy consumption using a constraints relation graph and improved ant colony optimization algorithm, Energies 11 (2018). doi: 10.3390/en11082106 [Google Scholar]
  94. J. Liu, Z. Zhou, D.T. Pham, W. Xu, C. Ji, Q. Liu, Robotic disassembly sequence planning using enhanced discrete bees algorithm in remanufacturing, Int. J. Prod. Res. 56 (2018) 3134–3151 [CrossRef] [Google Scholar]
  95. N. Hartono, F. Javier Ramírez, D.T. Pham, A sustainability-based model for robotic disassembly sequence planning in remanufacturing using the Bees Algorithm, IFAC-PapersOnLine 55 (2022) 1013–1018 [CrossRef] [Google Scholar]
  96. C.B. Kalayci, S.M. Gupta, Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem, Expert Syst. Appl. 40 (2013) 7231–7241 [CrossRef] [Google Scholar]
  97. W. Zhang, Y. Zheng, R. Ahmad, The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm, J. Intell. Manuf. 34 (2023) 2963–2988 [Google Scholar]
  98. C. Pornsing, A. Watanasungsuit, Discrete particle swarm optimization for disassembly sequence planning, ICMIT2014-2014 IEEE Int. Conf. Manag. Innov. Technol. (2014) pp. 480–485 [Google Scholar]
  99. H.-E. Tseng, C.-C. Chang, T.-W. Chung, Applying improved particle swarm optimization to asynchronous parallel disassembly planning, IEEE Access 10 (2022) 80555–80564 [CrossRef] [Google Scholar]
  100. Y. Tao, K. Meng, P. Lou, X. Peng, X. Qian, Joint decision-making on automated disassembly system scheme selection and recovery route assignment using multi-objective meta-heuristic algorithm, Int. J. Prod. Res. 57 (2019) 124–142 [CrossRef] [Google Scholar]
  101. C.B. Kalayci, S.M. Gupta, A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent disassembly line balancing problem, Int. J. Adv. Manuf. Technol. 69 (2013) 197–209 [CrossRef] [Google Scholar]
  102. M. Alshibli, A. El Sayed, E. Kongar, T.M. Sobh, S.M. Gupta, Disassembly sequencing using tabu search, J. Intell. Robot. Syst. Theory Appl. 82 (2016) 69–79 [CrossRef] [Google Scholar]
  103. F. Tao, L. Bi, Y. Zuo, A.Y.C. Nee, Partial/parallel disassembly sequence planning for complex products, J. Manuf. Sci. Eng. Trans. ASME 140 (2018). doi: 10.1115/1.4037608 [Google Scholar]
  104. C.B. Kalayci, S.M. Gupta, A tabu search algorithm for balancing a sequence-dependent disassembly line, Prod. Plan. Control 25 (2014) 149–160 [CrossRef] [Google Scholar]
  105. W. Liang, Z. Zhang, T. Yin, Y. Zhang, T. Wu, Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem, Int. J. Prod. Econ . 262 (2023) 108928 [CrossRef] [Google Scholar]
  106. X. Xia, W. Liu, Z. Zhang, L. Wang, J. Cao, X. Liu, A balancing method of mixed-model disassembly line in random working environment, Sustain 11 (2019), doi: 10.3390/su11082304 [Google Scholar]
  107. Y. Fang, H. Ming, M. Li, Q. Liu, D.T. Pham, Multi-objective evolutionary simulated annealing optimisation for mixed-model multi-robotic disassembly line balancing with interval processing time, Int. J. Prod. Res. 58 (2020) 846–862 [CrossRef] [Google Scholar]
  108. K. Wang, X. Li, L. Gao, P. Li, S.M. Gupta, A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem, Appl. Soft Comput. 107 (2021) 107404 [CrossRef] [Google Scholar]
  109. M. Chu, W. Chen, Human-robot collaboration disassembly planning for end-of-life power batteries, J. Manuf. Syst. 69 (2023) 271–291 [CrossRef] [Google Scholar]
  110. A. Allagui, I. Belhadj, R. Plateaux, M. Hammadi, O. Penas, N. Aifaoui, Reinforcement learning for disassembly sequence planning optimization, Comput. Ind. 151 (2023). doi: 10.1016/j.compind.2023.103992 [CrossRef] [Google Scholar]
  111. E. Yildiz, F. Worgotter, DCNN-based screw detection for automated disassembly processes, in Proc. − 15th Int. Conf. Signal Image Technol. Internet Based Syst. SISITS 2019 (2019) pp. 187–192 [Google Scholar]
  112. X. Li, M. Li, Y. Wu, D. Zhou, T. Liu, F. Hao, Accurate screw detection method based on faster R-CNN and rotation edge similarity for automatic screw disassembly, Int. J. Comput. Integr. Manuf. 34 (2021) 1177–1195 [CrossRef] [Google Scholar]
  113. M.F. Adesso, R. Hegewald, N. Wolpert, E. Schomer, B. Maier, B.A. Epple, Automatic classification and disassembly of fasteners in industrial 3D CAD-scenarios, in 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022) pp. 9874–9880 [CrossRef] [Google Scholar]
  114. D.P. Brogan, N.M. DiFilippo, M.K. Jouaneh, Deep learning computer vision for robotic disassembly and servicing applications, Array 12 (2021) 100094 [CrossRef] [Google Scholar]
  115. S. Mangold, C. Steiner, M. Friedmann, J. Fleischer, Vision-based screw head detection for automated disassembly for remanufacturing, Proc. CIRP 105 (2022) 1–6 [CrossRef] [Google Scholar]
  116. X. Zhang, K. Eltouny, X. Liang, S. Behdad, Automatic screw detection and tool recommendation system for robotic disassembly, J. Manuf. Sci. Eng. 145 (2023) 1–8 [Google Scholar]
  117. X. Zhang, D. Yi, S. Behdad, S. Saxena, Unsupervised human activity recognition learning for disassembly tasks, IEEE Trans. Ind. Informatics 20 (2024) 785–794 [CrossRef] [Google Scholar]
  118. W. Deng et al., Predictive exposure control for vision-based robotic disassembly using deep learning and predictive learning, Robot. Comput. Integr. Manuf. 85 (2024) 102619 [CrossRef] [Google Scholar]
  119. Y. Chen, H.Y. Liao, S. Behdad, B. Hu, Human activity recognition in an end-of-life consumer electronics disassembly task, Appl. Ergon. 113 (2023) 104090 [CrossRef] [Google Scholar]
  120. F. Ranz, V. Hummel, W. Sihn, Capability-based task allocation in human-robot collaboration, Proc. Manuf. 9 (2017) 182–189 [Google Scholar]
  121. F. Chen, K. Sekiyama, F. Cannella, T. Fukuda, Optimal subtask allocation for human and robot collaboration within hybrid assembly system, IEEE Trans. Autom. Sci. Eng. 11 (2014) 1065–1075 [CrossRef] [Google Scholar]
  122. B. Wu, B. Hu, H. Lin, Toward efficient manufacturing systems: a trust based human robot collaboration, Proc. Am. Control Conf. (2017) 1536–1541 [Google Scholar]
  123. C. Mouflih, R. Gaha, M. Bosch, A. Durupt, Improving the Sustainability of Manufactured Products: Literature Review and Challenges for Digitalization of Disassembly and Dismantling Processes 667 IFIP (Springer Nature Switzerland, 2023) [Google Scholar]
  124. A. Baratta, A. Cimino, F. Longo, L. Nicoletti, Computers & industrial engineering digital twin for human-robot collaboration enhancement in manufacturing systems: literature review and direction for future developments, Comput. Ind. Eng. 187 (2024) 109764 [CrossRef] [Google Scholar]
  125. E. Verna, S. Puttero, G. Genta, M. Galetto, Toward a concept of digital twin for monitoring assembly and disassembly processes, Qual. Eng. 0 (2023) 1–18 [Google Scholar]
  126. M. Kerin, D.T. Pham, J. Huang, J. Hadall, A generic asset model for implementing product digital twins in smart remanufacturing, Int. J. Adv. Manuf. Technol. 124 (2023) 3021–3038 [CrossRef] [Google Scholar]
  127. C. Mouflih, R. Gaha, A. Durupt, M. Bosch-Mauchand, K. Martinsen, B. Eynard, Decision support framework using knowledge based digital twin for sustainable product development and end of life, Proc. Des. Soc. 3 (2023) 1157–1166 [CrossRef] [Google Scholar]
  128. W. Qu, J. Li, R. Zhang, S. Liu, J. Bao, Adaptive planning of human-robot collaborative disassembly for end-of-life lithium-ion batteries based on digital twin, J. Intell. Manuf. (2023). doi: 10.1007/s10845-023- 02081-9 [Google Scholar]
  129. J. Li, H. Zheng, J. Bao, Development of digital twin-based WEEE recycling workshop: initial approaches and future challenges, in 2022 6th Int. Conf. Robot. Autom. Sci. ICRAS 2022 (2022) pp. 231–237 [Google Scholar]
  130. W. Li, Y. Peng, Y. Zhu, D.T. Pham, A.Y.C. Nee, S.K. Ong, End-of-life electric vehicle battery disassembly enabled by intelligent and human-robot collaboration technologies: a review, Robot. Comput. Integr. Manuf. 89 (2024) 102758 [CrossRef] [Google Scholar]
  131. J. Gao, G. Wang, J. Xiao, P. Zheng, E. Pei, Partially observable deep reinforcement learning for multi-agent strategy optimization of human-robot collaborative disassembly: a case of retired electric vehicle battery, Robot. Comput. Integr. Manuf. 89 (2024). doi: 10.1016/j.rcim.2024.102775 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.