Open Access
Review
Issue |
Manufacturing Rev.
Volume 11, 2024
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/mfreview/2024014 | |
Published online | 12 July 2024 |
- K. Vohra, A. Vodonos, J. Schwartz, E.A. Marais, M.P. Sulprizio, L.J. Mickley, Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem, Environ. Res. 195 (2021) 1–8 [Google Scholar]
- W. Huck, Transforming our world: the 2030 agenda for sustainable development, in: Sustainable Development Goals, 2023 653–684 [Google Scholar]
- I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci. 12 (2019) 463–491 [CrossRef] [Google Scholar]
- R. Hannappel, The impact of global warming on the automotive industry, in: AIP Conference Proceedings, 2017, vol. 1871, p. 60001 [Google Scholar]
- I. Cochran, A. Pauthier, A framework for alignment with the Paris Agreement: why, what and how for financial institutions, … /framework-alignment-with-paris-agreement-why …. 2019. Accessed: Aug. 30, 2023. [Online]. Available: https://climatepolicyinitiative.org/publication/implementing-alignment-recommendations-for-the-international-development - [Google Scholar]
- R.P. Barston, The Paris agreement, in: Modern Diplomacy, 2019, pp. 492–505 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, D.J. de Beer, Additive manufacturing of selected ecofriendly energy devices, Virtual and Physical Prototyping, Taylor & Francis, Dec. 31, 2023, vol. 18, no. 1 [Google Scholar]
- B.M.Y. Twigg, Twenty-five years of autocatalysts, Platin. Met. Rev. 43 (1999) 168–171 [CrossRef] [Google Scholar]
- J. Kašpar, P. Fornasiero, N. Hickey, Automotive catalytic converters: current status and some perspectives, Catal. Today 77 (2003) 419–449 [CrossRef] [Google Scholar]
- W. Klöpffer, Environmental hazard assessment of chemicals and products. Part VI. Abiotic degradation in the troposphere, Chemosphere 33 (1996) 1083–1099 [Google Scholar]
- V. Sharma, Y. Dewang, S. Jain, S. Jat, M. Singh Baghel, Strategies for reduction of harmful emissions from diesel engines, IOP Conf. Ser.: Earth Environ. Sci. 795 (2021) 012027 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, Laser powder bed fusion of Ti6Al4V lattice structures and their applications, J. Met. Mater. Miner. 30 (2020) 68–78 [Google Scholar]
- T.C. Dzogbewu, Laser powder bed fusion of Ti15Mo, Results Eng. 7 (2020) 100155 [CrossRef] [Google Scholar]
- Y. Wang et al., Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: the knowledge evolution of 3D printing, J. Manuf. Syst. 60 (2021) 709–733, Elsevier [CrossRef] [Google Scholar]
- M. Gebler, A.J.M. Schoot Uiterkamp, C. Visser, A global sustainability perspective on 3D printing technologies, Energy Policy 74 (2014) 158–167 [CrossRef] [Google Scholar]
- C. Sun, Y. Wang, M.D. McMurtrey, N.D. Jerred, F. Liou, J. Li, Additive manufacturing for energy: a review, Appl. Energy 282 (2021) 116041 [CrossRef] [Google Scholar]
- F.M. Baena-Moreno et al., Stepping toward efficient microreactors for CO2Methanation: 3D-printed gyroid geometry, ACS Sustain. Chem. Eng. 9 (2021) 8198–8206 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, W.B. du Preez, Additive manufacturing of ti-based intermetallic alloys: a review and conceptualization of a next-generation machine, Materials 14 (2021) 4317, Multidisciplinary Digital Publishing Institute [Google Scholar]
- L.A. Verhoef, B.W. Budde, C. Chockalingam, B. García Nodar, A.J.M. van Wijk, The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach, Energy Policy 112 (2018) 349–360 [CrossRef] [Google Scholar]
- Z. Chen, C. Han, M. Gao, S.Y. Kandukuri, K. Zhou, A review on qualification and certification for metal additive manufacturing, Virtual Phys. Prototyp. 17 (2022) 382–405 [CrossRef] [Google Scholar]
- M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Multiple material additive manufacturing − Part 1: A review: This review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials, Virtual Phys. Prototyp. 8 (2013) 19–50, Taylor & Francis Group [CrossRef] [Google Scholar]
- M. Sireesha, J. Lee, A.S. Kranthi Kiran, V.J. Babu, B.B.T. Kee, S. Ramakrishna, A review on additive manufacturing and its way into the oil and gas industry, RSC Adv. 8 (2018) 22460–22468, The Royal Society of Chemistry [Google Scholar]
- T.C. Dzogbewu, S.K. Fianko, N. Amoah, S. Afrifa Jnr, D. de Beer, Additive manufacturing in South Africa: critical success factors, Heliyon 8 (2022) e11852, Elsevier [CrossRef] [Google Scholar]
- T.C. Dzogbewu, Additive manufacturing of TiAl-based alloys, Manuf. Rev. 7 (2020) 35, EDP Sciences [Google Scholar]
- C.R.C. Mohanty, Reduce, reuse and recycle (the 3 Rs) and resource efficiency as the basis for sustainable wate management, Synerg. Resour. Effic. Informal Sect. Towar. Sustain. Waste Manag. 9 (2011) 1–31 [Google Scholar]
- I.P.G.M. Association, LCA primary production fact sheet secondary production fact sheet autocatalysts fact sheet LCA fact sheet environmental profile, 2022. Accessed: Oct. 17, 2023. [Online]. Available: www.ipa-news.com [Google Scholar]
- K. Benz, The automotive industry and climate change, PricewaterhouseCoopers AG, 2007, vol. 2, pp. 1–127, Accessed: Nov. 17, 2023. [Online]. Available: http://www.pwc.com/th/en/automotive/assets/co2.pdf [Google Scholar]
- D. Kurzydym, A. Klimanek, Z. Zmudka, Experimental and numerical analysis of flow through catalytic converters for original part and WALKER's replacement using reverse engineering and CFD, IOP Conf. Ser.: Mater. Sci. Eng. 421 (2018) 042044 [CrossRef] [Google Scholar]
- S. Hajimirzaee, A.M. Doyle, 3D printed catalytic converters with enhanced activity for low-temperature methane oxidation in dual-fuel engines, Fuel 274 (2020) 117848 [CrossRef] [Google Scholar]
- N. Kovacev, O. Doustdar, S. Li, A. Tsolakis, J.M. Herreros, K. Essa, The synergy between substrate architecture of 3D-printed catalytic converters and hydrogen for low-temperature aftertreatment systems, Chem. Eng. Sci. 269 (2023) 118490–118499 [CrossRef] [Google Scholar]
- S. Hajimirzaee, D. Shaw, P. Howard, A.M. Doyle, Industrial scale 3D printed catalytic converter for emissions control in a dual-fuel heavy-duty engine, Chem. Eng. Sci. 231 (2021) 116287 [CrossRef] [Google Scholar]
- L. Chen, S. Zhou, M. Li, F. Mo, S. Yu, J. Wei, Catalytic materials by 3D printing: a mini review, Catalysts 12 (2022) 1081, Multidisciplinary Digital Publishing Institute [Google Scholar]
- G. Reverdiau, A. Le Duigou, T. Alleau, T. Aribart, C. Dugast, T. Priem, Will there be enough platinum for a large deployment of fuel cell electric vehicles? Int. J. Hydrogen Energy 46 (2021) 39195–39207 [CrossRef] [Google Scholar]
- Q. Wei, H. Li, G. Liu, Y. He, Y. Wang, Y.E. Tan, D. Wang, X. Peng, G. Yang, N. Tsubaki, Metal 3D printing technology for functional integration of catalytic system, Nat. Commun. 11 (2020) 1–8 [CrossRef] [Google Scholar]
- L.R.S. Rosseau, V. Middelkoop, H.A.M. Willemsen, I. Roghair, M. van Sint Annaland, Review on additive manufacturing of catalysts and sorbents and the potential for process intensification, Front. Chem. Eng. 4 (2022) 834547 [CrossRef] [Google Scholar]
- E.J. Peterson, A.T. DeLaRiva, S. Lin, R.S. Johnson, H. Guo, J.T. Miller, C.H. Peden, B. Kiefer, F.H. Ribeiro, Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina, Nat. Commun. 5 (2014) 1–11 [Google Scholar]
- J.G.J. Olivier, J.A. Van Aardenne, F.J. Dentener, V. Pagliari, L.N. Ganzeveld, J.A.H.W. Peters, Recent trends in global greenhouse gas emissions:regional trends 1970–2000 and spatial distributionof key sources in 2000, Environ. Sci. 2 (2005) 81–99 [CrossRef] [Google Scholar]
- L. Jiang, J. Liang, X. Lu, E. Hou, F.M. Hoffman, Y. Luo, Country-level land carbon sink and its causing components by the middle of the twenty-first century, Ecol. Process. 10 (2021) 61 [CrossRef] [Google Scholar]
- J.G.J., P.J.A.H. Olivier, Trends in Global Co2 and total greenhouse gas emissions, PBL Netherlands Environ. Assess. Agency 5 (2020) 1–85 [Google Scholar]
- I. Energy, International energy & climate global greenhouse gas emissions: 1990–2020 and preliminary 2021 estimates, 2022, pp. 1–7, Accessed: Nov. 07, 2023. [Online]. Available: https://rhg. com/research/global-greenhouse-gas-emissions-2021/ [Google Scholar]
- P. Friedlingstein et al., Global carbon budget 2022, Earth Syst. Sci. Data 14 (2022) 4811–4900 [CrossRef] [Google Scholar]
- T. Di Grandi, Why does the automotive industry need PGMs? 2023. https://www.visualcapitalist.com/sp/why-does-the-automotive-industry-need-pgms/ (accessed Oct. 28, 2023). [Google Scholar]
- H. Tang, Z. Peng, R. Tian, L. Ye, J. Zhang, M. Rao, G. Li, Platinum-group metals: demand, supply, applications and their recycling from spent automotive catalysts, J. Environ. Chem. Eng. 11 (2023) 110237, Elsevier [CrossRef] [Google Scholar]
- C. Zhang, J. Yan, F. You, Critical metal requirement for clean energy transition: a quantitative review on the case of transportation electrification, Adv. Appl. Energy 9 (2023) 100116, Elsevier [CrossRef] [Google Scholar]
- US Department of Energy, Hydrogen and fuel cell technologies office, Hydrogen Shot, 2021. www.saasta.ac.za (accessed Oct. 24, 2023) [Google Scholar]
- A. Holdway, O. Inderwildi, Fuel cell technology, in: Energy, Transport, & the Environment: Addressing the Sustainable Mobility Paradigm, Springer-Verlag London Ltd, 2012, vol. 9781447127, pp. 273–283 [Google Scholar]
- N. Sazali, W.N.W. Salleh, A.S. Jamaludin, M.N.M. Razali, New perspectives on fuel cell technology: a brief review, Membranes, Multidisciplinary Digital Publishing Institute (MDPI) 10 (2020) 1–18 [CrossRef] [Google Scholar]
- E.B. Agyekum, J.D. Ampah, T. Wilberforce, S. Afrane, C. Nutakor, Research progress, trends, and current state of development on PEMFC-new insights from a bibliometric analysis and characteristics of two decades of research output, vol. 12, no. 11. 2022, p. 1103. Accessed: Mar. 27, 2023. [Online]. Available: https://www.mdpi.com/2077-0375/12/11/1103/htm [Google Scholar]
- S.S. Rathore, S. Biswas, D. Fini, A.P. Kulkarni, S. Giddey, Direct ammonia solid-oxide fuel cells: A review of progress and prospects, Int. J. Hydrogen Energy, 46 (2021) 35365–35384, Pergamon [CrossRef] [Google Scholar]
- C. Japan, S. Korea, Heraeus precious metals passenger cars: FCEV market share ( 2030 −2040) Western Europe North America Eastern Europe Passenger cars: FCEV market share (2016–2030), 2030 [Google Scholar]
- W. Grove, Fuel cell − What is it and how does it work?, 2018, pp. 1–14, Accessed: Oct. 19, 2023. [Online]. Available: https://www. peakoil. net/renewable/hydrogen-fuel-cell [Google Scholar]
- J. Mo, R.R. Dehoff, W.H. Peter, T.J. Toops, J.B. Green, F.Y. Zhang, Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production, Int. J. Hydrogen Energy 41 (2016) 3128–3135 [CrossRef] [Google Scholar]
- F. Calignano, T. Tommasi, D. Manfredi, A. Chiolerio, Additive manufacturing of a microbial fuel cell − a detailed study, Sci. Rep. 5 (2015) 17373–17373 [CrossRef] [Google Scholar]
- N. Touch, T. Hibino, Y. Nagatsu, K. Tachiuchi, Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells, Bioresour. Technol. 158 (2014) 225–230 [CrossRef] [Google Scholar]
- M.C.B. Agudelo, M. Hampe, T. Reiber, E. Abele, Investigation of porous metal-based 3D-printed anode GDLs for tubular high temperature proton exchange membrane fuel cells, Materials (Basel) 13 (2020) 2096 [Google Scholar]
- B. Bian, D. Shi, X. Cai, M. Hu, Q. Guo, C. Zhang, Q. Wang, A.X. Sun, J. Yang, 3D printed porous carbon anode for enhanced power generation in microbial fuel cell, Nano Energy 44 (2018) 174–180 [CrossRef] [Google Scholar]
- G. Scotti, V. Matilainen, P. Kanninen, H. Piili, A. Salminen, T. Kallio, S. Franssila, Laser additive manufacturing of stainless steel micro fuel cells, J. Power Sources 272 (2014) 356–361 [CrossRef] [Google Scholar]
- M. Zou, J. Conrad, B. Sheridan, J. Zhang, H. Huang, S. Mu, T. Zhou, Z. Zhao, K.S. Brinkman, H. Xiao, F. Peng, 3D printing enabled highly scalable tubular protonic ceramic fuel cells, ACS Energy Lett. 8 (2023) 3545–3551 [CrossRef] [Google Scholar]
- B. Bian, C. Wang, M. Hu, Z. Yang, X. Cai, D. Shi, J. Yang, Application of 3D printed porous copper anode in microbial fuel cells, Front. Energy Res. 6 (2018) 382622 [CrossRef] [Google Scholar]
- Y.T. He, Q. Fu, Y. Pang, Q. Li, J. Li, X. Zhu, R.H. Lu, W. Sun, Q. Liao, U. Schröder, Customizable design strategies for high-performance bioanodes in bioelectrochemical systems, iScience 24 (2021) 102163 [CrossRef] [Google Scholar]
- C.K. Jin, J.H. Kim, B.S. Lee, Powder bed fusion 3D printing and performance of stainless-steel bipolar plate with rectangular microchannels and microribs, Energies 15 (2022) 8463 [CrossRef] [Google Scholar]
- V. R, R. M, Performance improvement of proton exchange membrane fuel cell, Innov. Energy Res. 07 (2018) 1–5 [Google Scholar]
- D. Herzog, T. Röver, S. Abdolov, F. Becker, C. Gentner, Optimization and design for additive manufacturing of a fuel cell end plate, J. Laser Appl. 34 (2022) 042027 [CrossRef] [Google Scholar]
- B.G. Pollet, S.S. Kocha, I. Staffell, Current status of automotive fuel cells for sustainable transport, Curr. Opin. Electrochem. 16 (2019) 90–95, Elsevier Ltd [CrossRef] [Google Scholar]
- Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (2011) 981–1007, Elsevier [CrossRef] [Google Scholar]
- A. Willert, F.Z. Tabary, T. Zubkova, P.E. Santangelo, M. Romagnoli, R.R. Baumann, Multilayer additive manufacturing of catalyst-coated membranes for polymer electrolyte membrane fuel cells by inkjet printing, Int. J. Hydrogen Energy 47 (2022) 20973–20986 [CrossRef] [Google Scholar]
- Eric Onstad for Reuters.com, Exclusive: Bosch goes for platinum-light fuel cells, Commodities News, 2019. https://www.reuters.com/article/us-platinum-week-bosch-fuelcells-exclusi-idUSKCN1SJ0FG (accessed Oct. 23, 2023) [Google Scholar]
- J. Ge, B. Yuan, L. Zhao, M. Yan, W. Chen, L. Zhang, AMI_SAPGMIR Terms of Reference MINTEK, 2022, vol. 20, pp. 2872–2888, Accessed: Dec. 29, 2022. [Online]. Available: https://papers. ssrn. com/abstract=3985836 [Google Scholar]
- H. Philamore, J. Rossiter, P. Walters, J. Winfield, I. Ieropoulos, Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication, J. Power Sources 289 (2015) 91–99 [CrossRef] [Google Scholar]
- M. Lomberg, P. Boldrin, F. Tariq, G. Offer, B. Wu, N.P. Brandon, Additive manufacturing for solid oxide cell electrode fabrication, ECS Trans. 68 (2015) 2119–2127 [CrossRef] [Google Scholar]
- G. Chisholm, P.J. Kitson, N.D. Kirkaldy, L.G. Bloor, L. Cronin, 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture, Energy Environ. Sci. 7 (2014) 3026–3032 [CrossRef] [Google Scholar]
- A. Ambrosi, M. Pumera, Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts, ACS Sustain. Chem. Eng. 6 (2018) 16968–16975 [CrossRef] [Google Scholar]
- D. Bhattacharya, K. Wang, G.P. Wu, C. Arges, Extended-surface thin-film platinum electrocatalysts with tunable nanostructured morphologies, JACS Au, 8 (2023) 2269–2279 [Google Scholar]
- P. Wang, Q. Shao, X. Huang, Updating Pt-based electrocatalysts for practical fuel cells, Joule 2 (2018) 2514–2516, Cell Press [CrossRef] [Google Scholar]
- S. Ao, Z. Guo, Y. Song, D. Fang, Y. Bao, Clog-free, low-cost, and uniform electrode inks for 3D printed lithium-ion batteries, ACS Appl. Energy Mater. 5 (2022) 6970–6979 [CrossRef] [Google Scholar]
- K. Xu, N. Zhao, Y. Li, P. Wang, Z. Liu, Z. Chen, J. Shen, C. Liu, 3D printing of ultrathick natural graphite anodes for high-performance interdigitated three-dimensional lithium-ion batteries, Electrochem. Commun. 139 (2022) 107312 [CrossRef] [Google Scholar]
- J. Hu, Y. Jiang, S. Cui, Y. Duan, T. Liu, H. Guo, L. Lin, Y. Lin, J. Zheng, K. Amine, F. Pan, 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery, Adv. Energy Mater. 6 (2016) 1600856 [CrossRef] [Google Scholar]
- J. Li, M.C. Leu, R. Panat, J. Park, A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing, Mater. Des. 119 (2017) 417–424 [CrossRef] [Google Scholar]
- C. Liu, X. Cheng, B. Li, Z. Chen, S. Mi, C. Lao, Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process, Materials (Basel). 10 (2017) 934 [CrossRef] [Google Scholar]
- C. Liu, F. Xu, X. Cheng, J. Tong, Y. Liu, Z. Chen, C. Lao, J. Ma, J., Comparative study on the electrochemical performance of LiFePO 4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process, Ceram. Int. 45 (2019) 14188–14197 [CrossRef] [Google Scholar]
- L.B.T. Inc., Platinum group metals ltd. subsidiary lion battery technologies granted second US patent new provisional patent filed for PGMs in lithium batteries, 2023. https://www.newsfilecorp.com/release/72273/Platinum-Group-Metals-Ltd. −Subsidiary-Lion-Battery-Technologies-Granted-Second-US-Patent-New-Provisional-Patent-Filed-for-PGMs-in-Lithium-Batteries (accessed Nov. 18, 2023) [Google Scholar]
- M. Creamer, Platinum group metals may also play role in batteries − Anglo American Platinum, 2022. https://www.miningweekly.com/article/platinum-group-metals-may-also-play-role-in-batteries-anglo-american-platinum-2022- 02-23 (accessed Nov. 18, 2023) [Google Scholar]
- R.M. Jones, Batteries of the future may contain PGMs and Be More Efficient − New Age Metals Inc., 2021. https://newagemetals.com/batteries-of-the-future-may-contain-pgms-and-be-more-efficient/ (accessed Oct. 28, 2023) [Google Scholar]
- P.G. Metals, JV Article: Platinum Group Metals is at the vanguard of next generation lithium-ion batteries−MINING.COM, 2023. https://www.mining.com/joint-venture/jv-article-platinum-group-metals-is-at-the-vanguard-of-next-generation-lithium-ion-batteries/ (accessed Oct. 28, 2023) [Google Scholar]
- M. Creamer, Hopes rise for platinum, palladium use in batteries as commercialisation trialling steps up, 2023. https://www.miningweekly.com/article/hopes-rise-for-platinum-palladium-use-in-batteries-as-commercialisation-trialling-steps-up-2023- 06-21 (accessed Oct. 28, 2023) [Google Scholar]
- P.E. Delannoy, B. Riou, B. Lestriez, D. Guyomard, T. Brousse, J. Le Bideau, Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries, J. Power Sources 274 (2015) 1085–1090 [CrossRef] [Google Scholar]
- A. Patil, V. Patil, D. Wook Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull. 43 (2008) 1913–1942 [CrossRef] [Google Scholar]
- D. Vernardou, K.C. Vasilopoulos, G. Kenanakis, 3D printed graphene-based electrodes with high electrochemical performance, Appl. Phys. A Mater. Sci. Process. 123 (2017) 1–7 [CrossRef] [Google Scholar]
- Minining Technology, Platinum potential: how batteries could open the door to a mining rush − Mining Technology, 2020. https://www.mining-technology.com/features/platinum-potential-how-batteries-could-open-the-door-to-a-mining-rush/?cf-view (accessed Oct. 28, 2023) [Google Scholar]
- Y. Pang, Y. Cao, Y. Chu, M. Liu, K. Snyder, D. MacKenzie, C. Cao, Additive manufacturing of batteries, Adv. Funct. Mater. 30 (2020) 1906244, John Wiley & Sons, Ltd [CrossRef] [Google Scholar]
- K. Gerber, Sakuu partners with LiCAP technologies for electrode supply for solid-state batteries, 2023, Accessed: Jul. 08, 2023. [Online]. Available: www.licaptech.com [Google Scholar]
- Sakuu, Sakuu announces successful 3D printing of fully functional high-performance patterned batteries | Sakuu | Sakuu, 2023. https://www.sakuu.com/news/sakuu-announces-successful-3d-printing-of-fully-fu (accessed Jul. 08, 2023) [Google Scholar]
- K. Narita, M.A. Saccone, Y. Sun, J.R. Greer, Additive manufacturing of 3D batteries: a perspective, J. Mater. Res. 37 (2022) 1535–1546 [CrossRef] [Google Scholar]
- R. Rowling, F. Njini, Platinum giant wants to create new battery to replace cobalt, nickel demand | Automotive News Europe, 2019. https://europe.autonews.com/suppliers/platinum-giant-wants-create-new-battery-replace-cobalt-nickel-demand (accessed Oct. 28, 2023) [Google Scholar]
- B.G. Pollet, I. Staffell, J.L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects, Electrochim. Acta. 84 (2012) 235-249, Pergamon [CrossRef] [Google Scholar]
- R. Bridgeland, A. Chapman, B. McLellan, P. Sofronis, Y. Fujii, Challenges toward achieving a successful hydrogen economy in the US: potential end-use and infrastructure analysis to the year 2100, Clean. Prod. Lett. 3 (2022) 100012 [CrossRef] [Google Scholar]
- A. Alejandro Nuñez, N. De Blasio, The future of renewable hydrogen in the European Union: Market and Geopolitical Implications | Belfer Center for Science and International Affairs, no. March, 2022, Accessed: Nov. 18, 2023. [Online]. Available: https://nrs., harvard., edu/URN-3:HUL.INSTREPOS: 37372476 [Google Scholar]
- I. Boulton, 3D Printing and the environmental impact of manufacturing, Ptc, 2017. https://markforged.com/resources/blog/3d-printing-and-the-environmental-impact-of-manufacturing (accessed Aug. 22, 2023) [Google Scholar]
- T.C. Dzogbewu, S. Afrifa Jnr, N. Amoah, S.K. Fianko, D. de Beer, Additive manufacturing interventions during the COVID-19 pandemic: South Africa, Appl. Sci. 12 (2021) 295 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, D.J. de Beer, W.B. du Preez, Laser powder bed fusion of Ti15Mo fused tracks and layers, JOM, (2023) 1–14, doi: 10.1007/s11837-023-05842-2 [Google Scholar]
- A. Wieczorek, Impact of 3D printing on logistics, Res. Logist. Prod. 7 (2017) 443–450 [Google Scholar]
- T.C. Dzogbewu, S.A. Jnr, N. Amoah, S. Koranteng-Fianko, A. Imdaadulah, D.J. de Beer, Supply chain disruptions and resilience in manufacturing industry during Covid-19: additive manufacturing intervention in perspective, J. Ind. Eng. Manag. 16 (2023) 509–520 [Google Scholar]
- S. Jung, L.B. Kara, Z. Nie, T.W. Simpson, K.S. Whitefoot, Is additive manufacturing an environmentally and economically preferred alternative for mass production? Environ. Sci. Technol. 57 (2023) 6373–6386, NLM (Medline) [CrossRef] [Google Scholar]
- S.H. Choi, H.H. Cheung, Digital fabrication of multi-material objects for biomedical applications, Biomed. Eng. Trends Mater. Sci. 8 (2011) 978–953 doi: 10.5772/13045 [Google Scholar]
- R. Pugliese, S. Regondi, Artificial intelligence-empowered 3D and 4D printing technologies toward smarter biomedical materials and approaches, Polymers (Basel). 14 (2022) 1–18. doi: 10.3390/polym14142794 [Google Scholar]
- C. Hyunjin, A study on the change of manufacturing design process due to the development of A.I. design and 3D printing, IOP Conf. Ser.: Mater. Sci. Eng. 727 (2020) 012010 [CrossRef] [Google Scholar]
- B. Berman, 3-D printing: the new industrial revolution, Bus. Horiz. 55 (2012) 155–162 [CrossRef] [Google Scholar]
- A. Schmatz, Bosch closes the circle: almost all the platinum in fuel-cell stacks can be recovered − Bosch Media Service, 2023. https://www.bosch-presse.de/pressportal/de/en/bosch-closes-the-circle-almost-all-the-platinum-in-fuel-cell-stacks-can-be-recovered-258048. html (accessed Oct. 23, 2023) [Google Scholar]
- M. Despeisse, M. Baumers, P. Brown, F. Charnley, S.J. Ford, A. Garmulewicz, S. Knowles, T.H. Minshall, J. Rowley, Unlocking value for a circular economy through 3D printing: a research agenda, Technol. Forecast. Soc. Change 115 (2017) 75–84 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, W.B. du Preez, Additive manufacturing of titanium‐based implants with metal‐based antimicrobial agents, Metals 11 (2021) 1–12 [Google Scholar]
- Claire, Recent Report Highlights Sustainability Within Metal Additive Manufacturing − 3Dnatives, 2022. https://www.3dnatives.com/en/report-sustainability-within-metal-additive-manufacturing-191020225/ (accessed Nov. 21, 2023) [Google Scholar]
- B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549–559 [CrossRef] [Google Scholar]
- L. Di, Y. Yang, Greenhouse gas emission analysis of integrated production-inventory- transportation supply chain enabled by additive manufacturing, J. Manuf. Sci. Eng. Trans. ASME 144 (2022) 031006 [Google Scholar]
- E. Montalbano, How 3D printed catalysts could be used to power hypersonic flight, 2021. https://www.designnews.com/3d-printing/how-3d-printed-catalysts-could-be-used-to-power-hypersonic-flight (accessed Nov. 18, 2023) [Google Scholar]
- R. Hubesch, M. Mazur, K. Föger, P.R. Selvakannan, S.K. Bhargava, Zeolites on 3D-printed open metal framework structure: metal migration into zeolite promoted catalytic cracking of endothermic fuels for flight vehicles, Chem. Commun. 57 (2021) 9586–9589 [CrossRef] [Google Scholar]
- À. Navó, J.M. Bergada, Aerodynamic study of the NASA's X-43a hypersonic aircraft, Appl. Sci. 10 (2020) 1–23 [Google Scholar]
- T.C. Dzogbewu, D.J. de Beer, Additive manufacturing of NiTi shape memory alloy and its industrial applications, Heliyon 10 (2024) e23369, Elsevier [CrossRef] [Google Scholar]
- K. Lin, J. Qiao, K. Shi, W. Dong, D. Gu, Laser powder bed fusion of micro-channels for the application of proton exchange membrane fuel cell bipolar plates, CIRP J. Manuf. Sci. Technol. 43 (2023) 193–204 [CrossRef] [Google Scholar]
- D. Jafari, T.H.J. Vaneker, I. Gibson, Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts, Mater. Des. 202 (2021) 109471. doi: 10.1016/J.MATDES. 2021. 109471 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, W.B. Du Preez, Producing Ti5Mo-fused tracks and layers via laser powder bed fusion, Metals (Basel). 12 (2022) 950 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, W.B. Du Preez, In situ alloying of Ti10Mo fused tracks and layers via laser powder bed fusion, Manuf. Rev. 9 (2022) 23 [Google Scholar]
- K.T. Kim, Mechanical performance of additively manufactured austenitic 316L stainless steel, Nucl. Eng. Technol. 54 (2022) 244–254 [CrossRef] [Google Scholar]
- I. Adam, T. Cephas Dzogbewu, J. Combrinck, W. du Preez, Laser powder bed fusion of Co-Cr: a material comparison, MATEC Web Conf. 370 (2022) 11002 [CrossRef] [EDP Sciences] [Google Scholar]
- T.S. Byun, D.A. Collins, A.G. Le Coq, T.G. Lach, K.D. Linton, M.N. Gussev, J.W. Werden, M.R. Mcalister, X. Chen, C.B. Joslin, J.K. Carver, Mechanical properties of additively manufactured 316L stainless steel before and after neutron irradiation (FY21), Oak Ridge, TN (United States), May 2021 1–37, doi: 10.2172/1974316 [Google Scholar]
- A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, P.M. Chmielus, Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges, Prog. Mater. Sci. 119 (2021) 100707, Pergamon [CrossRef] [Google Scholar]
- S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta. Mater. 108 (2016) 36–45 [CrossRef] [Google Scholar]
- C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes, J. Mater. Process. Technol. 211 (2011) 978–987 [CrossRef] [Google Scholar]
- T.C. Dzogbewu, W.B. du Preez, Fused tracks and layers of Ti10Mo6Cu data obtained via laser powder bed fusion, Data Br. 46 (2023) 108775 [CrossRef] [Google Scholar]
- A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges, MDPI AG, 2021, Vol. 11, No. 3, pp. 1–33. doi: 10.3390/APP11031213 [Google Scholar]
- V. Yakubov, H. Ostergaard, S. Bhagavath, C.L.A. Leung, J. Hughes, E. Yasa, M. Khezri, S.K. Löschke, Q. Li, A.M. Paradowska, Recycled aluminium feedstock in metal additive manufacturing: a state of the art review, Heliyon 10 (2024) e27243, Elsevier [CrossRef] [Google Scholar]
- T.C. Dzogbewu, D. de Beer, Powder bed fusion of multimaterials, J. Manuf. Mater. Process. 7 (2023) 15 [Google Scholar]
- G.H. Loh, E. Pei, D. Harrison, M.D. Monzón, An overview of functionally graded additive manufacturing, Addit. Manuf. 23 (2018) 34–44, Elsevier [Google Scholar]
- D. Wang et al., Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion, Virtual Phys. Prototyp. 17 (2022) 329–365, Taylor & Francis [CrossRef] [Google Scholar]
- M. Mehrpouya, D. Tuma, T. Vaneker, M. Afrasiabi, M. Bambach, I. Gibson, Multimaterial powder bed fusion techniques, Rapid Prototyp. J. 28 (2022) 1–19 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.