Open Access
Manufacturing Rev.
Volume 11, 2024
Article Number 8
Number of page(s) 17
Published online 09 April 2024
  1. F. Farajpour, A. Hassanzadeh, S. Elahi, M. Ghazanfari, Digital supply chain blueprint via a systematic literature review, Technolog. Forecast. Social Change 184 (2022) 121976 [Google Scholar]
  2. B. Brown, J. Sikes, P. Willmott, Bullish on Digital: McKinsey Global Survey Results, Insights Publ. (2013). ( accessed 15 October 2016) [Google Scholar]
  3. A. Gunasekaran, T. Papadopoulos, R. Dubey, S.F. Wamba, S.J. Childe, B. Hazen, Gartner, inc. and/or its affiliates, Supply Chain Technologies and Digital Transformation (2023). Available at: Https://Www.Gartner.Com/En/Supply-Chain/Topics/Supply-Chain-Digital-Transformation [Google Scholar]
  4. K. Belova, Digital Transformation in Supply Chain: Key Trends, Technologies, and Use Cases (2022). https://Pixelplex.Io/Blog/What-Is-Digital-Transformation-in-Supply-Chain. [Google Scholar]
  5. A.G. Frank, L.S. Dalenogare, N.F. Ayala, Industry 4.0 technologies: implementation patterns in manufacturing companies, Int. J. Product. Econ. 210 (2019) 15–26 [Google Scholar]
  6. J. Barata, The fourth industrial revolution of supply chains: a tertiary study, J. Eng. Technol. Manag. 60 (2021) 101624 [Google Scholar]
  7. O. Bongomin, A. Yemane, B. Kembabazi, C. Malanda, M. Chikonkolo Mwape, N. Mpofu Sheron, D. Tigalana, Industry 4.0 disruption and its neologisms in major industrial sectors: a state of the art, J. Eng. 2020 (2020) 1–45 [Google Scholar]
  8. B. Meindl, N.F. Ayala, J. Mendonça, A.G. Frank, The four smarts of Industry 4.0: evolution of ten years of research and future perspectives, Technolog. Forecast. Social Change 168 (2021) 120784 [Google Scholar]
  9. S. Raj, A. Sharma, Supply Chain Management in the Cloud (2014). Available at [Google Scholar]
  10. G. Hanifan, A. Sharma, C. Newberry, The digital supply network: a new paradigm for supply chain management, Accent. Glob. Manag. Consult (2014) 1–8 [Google Scholar]
  11. S. Schrauf, P. Berttram, Industry 4.0: how digitization makes the supply chain more efficient, agile, and customer-focused, Strateg. Technol (2016) 1–32 [Google Scholar]
  12. Z. Li, G. Liu, L. Liu, X. Lai, G. Xu, IoT-based tracking and tracing platform for prepackaged food supply chain, Ind. Manag. Data Syst. 117 (2017) 1906–1916 [Google Scholar]
  13. W.C. Tan, M.S. Sidhu, Review of RFID and IoT integration in supply chain management Oper. Res. Perspect. 9 (2022) [Google Scholar]
  14. M. Brinch, Understanding the value of big data in supply chain management and its business processes: towards a conceptual framework, Int. J. Oper. Product. Manag. 38 (2018) 1589–1614 [Google Scholar]
  15. I. Taboada, H. Shee, Understanding 5G technology for future supply chain management, Int. J. Logist. Res. Appl. 24 (2020) 1–15 [Google Scholar]
  16. B. Musigmann, H. von der Gracht, E. Hartmann, Blockchain technology in logistics and supply chain management—a bibliometric literature review from 2016 to January 2020, IEEE Trans. Eng. Manag. 67 (2020) 988–1007 [Google Scholar]
  17. M. Ben-Daya, E. Hassini, Z. Bahroun, Internet of things and supply chain management: a literature review, Int. J. Product. Res. 57 (2019) 4719–4742 [Google Scholar]
  18. D. Tranfield, D. Denyer, P. Smart, Towards a methodology for developing evidence-informed management knowledge by means of systematic review, Br. J. Manag. 14 (2003) 207–222 [CrossRef] [Google Scholar]
  19. L. Ruiz-Garcia, L. Lunadei, The role of RFID in agriculture: applications, limitations and challenges, Comput. Electr. Agric. 79 (2011) 42–50 [CrossRef] [Google Scholar]
  20. C.N. Verdouw, A.J.M. Beulens, J.G.A.J. van der Vorst, Virtualisation of floricultural supply chains: a review from an internet of things perspective, Comput. Electr. Agric. 99 (2013) 160–175 [CrossRef] [Google Scholar]
  21. Fragkiadakis, An IoT-based platform for supply chain monitoring, in 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC) (2021) [Google Scholar]
  22. E. Manavalan, K. Jayakrishna, A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements, Comput. Ind. Eng. 127 (2019) 925–953 [CrossRef] [Google Scholar]
  23. A. Tzounis, N. Katsoulas, T. Bartzanas, C. Kittas, Internet of Things in agriculture, recent advances and future challenges, Biosyst. Eng. 164 (2017) 31–48 [Google Scholar]
  24. B. Yan, X.H. Wu, B. Ye, Y.W. Zhang, Three-level supply chain coordination of fresh agricultural products in the Internet of Things, Ind. Manag. Data Syst. (2017) 117 (9), 1842-1865 [Google Scholar]
  25. L. Njomane, A. Telukdarie, Impact of COVID-19 food supply chain: comparing the use of IoT in three South African supermarkets, Technol. Soc. 71 (2022) 102051 [Google Scholar]
  26. S. Jangirala, A.K. Das, A.V. Vasilakos, Designing secure lightweight blockchain-enabled RFID-based authentication protocol for supply chains in 5G mobile edge computing environment, IEEE Trans. Ind. Inf. 16 (2019) 7081–7093 [Google Scholar]
  27. R.Y. Zhong, G.Q. Huang, S. Lan, Q.Y. Dai, X. Chen, T. Zhang, A big data approach for logistics trajectory discovery from RFID-enabled production data, Int. J. Product. Econ. 165 (2015) 260–272 [Google Scholar]
  28. H.S. Heese, Inventory record inaccuracy, double marginalization, and RFID adoption, Prod. Oper. Manag. 16 (2007) 542–553 [Google Scholar]
  29. H.S. Heese, Inventory record inaccuracy, RFID technology adoption and supply chain coordination, in: T.M. Choi, T. Cheng (Eds.), Supply Chain Coordination under Uncertainty. International Handbooks on Information Systems Springer, Berlin, Heidelberg (2011) [Google Scholar]
  30. Q. Dai, R. Zhong, G.Q. Huang, T. Qu, T. Zhang, T.Y. Luo, Radio frequency identification-enabled real-time manufacturing execution system: a case study in an automotive part manufacturer, Int. J. Comput. Integr. Manufactur. 25 (2012) 51–65 [Google Scholar]
  31. R.Y. Zhong, G.Q. Huang, S. Lan, Q.Y. Dai, T. Zhang, C. Xu, A two-level advanced production planning and scheduling model for RFID-enabled ubiquitous manufacturing, Adv. Eng. Inf. 29 (2015) 799–812 [Google Scholar]
  32. S.F. Wamba, A.T. Chatfield, A contingency model for creating value from RFID supply chain network projects in logistics and manufacturing environments, Eur. J. Inf. Syst. 18 (2009) 615–636 [Google Scholar]
  33. K. Sari, Exploring the impacts of radio frequency identification (RFID) technology on supply chain performance, Eur. J. Oper. Res. 207 (2010) 174–183 [Google Scholar]
  34. G. Ferrer, S.K. Heath, N. Dew, An RFID application in large job shop remanufacturing operations, Int. J. Product. Econ. 133 (2011) 612–621 [Google Scholar]
  35. O. Urbano, A. Perles, C. Pedraza, S. Rubio-Arraez, M.L. Castelló, M.D. Ortola, R. Mercado, Cost-effective implementation of a temperature traceability system based on smart RFID tags and IoT services, Sensors 20 (2020) 1163 [Google Scholar]
  36. A. Shrivastava, S.J. Suji Prasad, A.R. Yeruva, P. Mani, P. Nagpal, A. Chaturvedi, IoT based RFID attendance monitoring system of students using Arduino ESP8266 & Adafruition defined area, Cybern. Syst (2023) 1–12 . DOI: 10.1080/01969722.2023.2166243 [Google Scholar]
  37. S. Xie, F. Zhang, R. Cheng, Security enhanced RFID authentication protocols for healthcare environment, Wireless Pers. Commun. 117 (2020) 1–16 [Google Scholar]
  38. R.G. Richey, T.R. Morgan, K. Lindsey-Hall, F.G. Adams, A global exploration of Big Data in the supply chain, Int. J. Phys. Distrib. Logist. Manag. 46 (2016) 710–739 [Google Scholar]
  39. B.T. Hazen, C.A. Boone, J.D. Ezell, L.A. Jones-Farmer, Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications, Int. J. Prod. Econ. 154 (2014) 72–80 [Google Scholar]
  40. M. Giannakis, M. Louis, A multi-agent based system with big data processing for enhanced supply chain agility, J. Enterprise Inform. Manag. 29 (2016) 706–727 [Google Scholar]
  41. M. Giannakis, M. Louis, A multi-agent based system with big data processing for enhanced supply chain agility, J. Enterprise Inf. Manag. 29 (2016) 706–727 [Google Scholar]
  42. N.P. Singh, S. Singh, Building supply chain risk resilience: Role of big data analytics in supply chain disruption mitigation, Benchmarking 26 (2019) 2318–2342 [Google Scholar]
  43. I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The rise of “big data” on cloud computing: review and open research issues, Inf. Syst. 47 (2015) 98–115 [Google Scholar]
  44. H. Kaur, S.P. Singh, Heuristic modeling for sustainable procurement and logistics in a supply chain using big data, Comput. Oper. Res. 98 (2018) 301–321 [CrossRef] [MathSciNet] [Google Scholar]
  45. J. Mageto, Big data analytics in sustainable supply chain management: a focus on manufacturing supply chains, Sustainability 13 (2021) 7101 [Google Scholar]
  46. T.M. Choi, Y. Chen, Circular supply chain management with large scale group decision making in the big data era: the macro-micro model, Technol. Forecast. Social Change 169 (2021) 120791 [Google Scholar]
  47. R. Alshawabkeh, H. AL-Awamleh, M.S Alkhawaldeh, R. Kanaan, S. Al-Hawary, A. Mohammad, R. Alkhawalda, The mediating role of supply chain management on the relationship between big data and supply chain performance using SCOR model, Uncertain Supply Chain Manag. 10 (2022) 729–736 [Google Scholar]
  48. N.K. Dev, R. Shankar, R. Gupta, J. Dong, Multicriteria evaluation of real-time key performance indicators of supply chain with consideration of big data architecture, Comput. Ind. Eng. 128 (2019) 1076–1087 [CrossRef] [Google Scholar]
  49. S. Bag, L.C. Wood, L. Xu, P. Dhamija, Y. Kayikci, Big data analytics as an operational excellence approach to enhance sustainable supply chain performance, Resour. Conserv. Recycl. 153 (2020) 104559 [Google Scholar]
  50. R. Cole, M. Stevenson, J. Aitken, Blockchain technology: implications for operations and supply chain management, Supply Chain Manag. 24 (2019) 469–483 [Google Scholar]
  51. L. Kehoe, N. O'connell, D. Andrzejewski, K. Gindner, D. Dalal, When two chains combine: supply chain meets blockchain (2017). Available at [Google Scholar]
  52. S. Laaper, J. Fitzgerald, E. Quasney, W. Yeh, M. Basir, Using blockchain to drive supply chain innovation, in Digit. Supply Chain Manag. Logist. Proc. Hambg. Int. Conf. Logist (2017) Vol. 1, p. 2013 [Google Scholar]
  53. Y. Shibuya, V. Babich, Multi-tier supply chain financing with blockchain (2021). Available at SSRN, 3787044. [Google Scholar]
  54. S.A. Raza, A systematic literature review of RFID in supply chain management, J. Enterprise Inf. Manag. 35 (2022) 617–649 [Google Scholar]
  55. A. Khanna, S. Jain, A. Burgio, V. Bolshev, V. Panchenko, Blockchain-enabled supply chain platform for indian dairy industry: safety and traceability, Foods 11 (2022) 2716 [Google Scholar]
  56. M. Nakasumi, Information sharing for supply chain management based on block chain technology, in 2017 IEEE 19th conference on business informatics (CBI), IEEE (2017) Vol. 1, pp. 140–149 [Google Scholar]
  57. P. Michelman, Seeing beyond the blockchain hype, MIT Sloan Manag. Rev. 58 (2017) 17 [Google Scholar]
  58. S.E. Chang, Y.C. Chen, M.F. Lu, Supply chain re-engineering using blockchain technology: a case of smart contract based tracking process, Technolog. Forecast. Social Change 144 (2019) 1–11 [Google Scholar]
  59. I.A. Omar, R. Jayaraman, M.S. Debe, K. Salah, I. Yaqoob, M. Omar, Automating procurement contracts in the healthcare supply chain using blockchain smart contracts, IEEE Access 9 (2021) 37397–37409 [Google Scholar]
  60. B. Haque, R. Hasan, O.M. Zihad, SmartOil: blockchain and smart contract‐based oil supply chain management, IET Blockchain 1 (2021) 95–104 [Google Scholar]
  61. S. Mendonça, B. Damásio, L.C. de Freitas, L. Oliveira, M. Cichy, A. Nicita, The rise of 5G technologies and systems: a quantitative analysis of knowledge production, Telecommunications Policy 46 (2022) 102327 [Google Scholar]
  62. M. Agiwal, N. Saxena, A. Roy, Towards connected living: 5G enabled internet of things (IoT), IETE Tech Rev. 36 (2019) 1–13 [Google Scholar]
  63. S.K. Rao, R. Prasad, Impact of 5G technologies on industry 4.0, Wirel. Pers. Commun. 100 (2018) 145–159 [Google Scholar]
  64. 5GPPP, 5G and Factories of the Future (2015). Available at [Google Scholar]
  65. L. Wood, Global 5G Market Report 2019-2025-Market Is Expected to Reach $277 Billion by 2025 at a CAGR of 111% − ResearchAndMarkets.Com (2019, April 10) [Google Scholar]
  66. S. Rommer, P. Hedman, M. Olsson, L. Frid, S. Sultana, C. Mulligan, 5G Core Networks. Academic Press (2020). [Google Scholar]
  67. A. Dolgui, D. Ivanov, 5G in digital supply chain and operations management: fostering flexibility, end-to-end connectivity and real-time visibility through internet-of-everything, Int. J. Product. Res. 60 (2022) 442–451 [Google Scholar]
  68. J.F. Cheng, Y. Yang, X.F. Zou, Y. Zuo, 5G in manufacturing: a literature review and future research, Int. J. Adv. Manufactur. Technol. (2022) Available from: [Google Scholar]
  69. A. Lagorio, C. Cimini, R. Pinto, S. Cavalieri, 5G in logistics 4.0: potential applications and challenges, Proc. Comput. Sci. 217 (2023) 650–659 [Google Scholar]
  70. E.J. Khatib, R. Barco, Optimization of 5G networks for smart logistics, Energies 14 (2021) 1758 [Google Scholar]
  71. C. Küpper, J. Rösch, H. Winkler, Empirical findings for the usage of 5G as a basis for real time locating systems (RTLS) in the automotive industry, Proc. CIRP 107 (2022) 1287–1292 [Google Scholar]
  72. M. Siddiqi, H. Yu, J. Joung, 5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices, Electronics 8 (2019) 981 [Google Scholar]
  73. P. Trakadas, N. Nomikos, E.T. Michailidis, T. Zahariadis, F.M. Facca, D. Breitgand, S. Rizou, X. Masip, P. Gkonis, Hybrid clouds for data-intensive, 5G-enabled IoT applications: an overview, Key Issues Relevant Arch, Sensors 19 (2019) 3591 [Google Scholar]
  74. W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, M. Gebler, A.J.S. Uiterkamp, C. Visser, A global sustainability perspective on 3D printing technologies, Energy Policy 74 (2014) 158–167 [CrossRef] [Google Scholar]
  75. G.R. Janssen, I.J. Blankers, E.A. Moolenburgh, A.L. Posthumus, TNO: The impact of 3-D printing on supply chain management ( 2014). Accessed December 14, 2019: [Google Scholar]
  76. J. Holmström, J. Partanen, J. Tuomi, M. Walter, Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment, J. Manufactur. Technol. Manag. 21 (2010) 687–697 [Google Scholar]
  77. A. Aimar, A. Palermo, B. Innocenti, The role of 3D printing in medical applications: a state of the art, J. Health Eng. 2019 (2019) 5340616 [Google Scholar]
  78. Y. Bozkurt, E. Karayel, 3D printing technology; methods, biomedical applications, future opportunities and trends, J. Mater. Res. Technol. 14 (2021) 1430–1450 [Google Scholar]
  79. S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review, Int. J. Adv. Manufactur. Technol. 67 (2013) 1191–1203 [Google Scholar]
  80. Y. Xiong, H. Lu, G.D. Li, S.M. Xia, Z.X. Wang, Y.F. Xu, Game changer or threat: the impact of 3D printing on the logistics supplier circular supply chain, Ind. Market. Manag. 106 (2022) 461–475 [Google Scholar]
  81. L. Agnusdei, A. Del Prete, Additive manufacturing for sustainability: a systematic literature review, Sustain. Fut. 4 (2022) 100098 [Google Scholar]
  82. M.V. Shree, V. Dhinakaran, V. Rajkumar, P.B. Ram, M.D. Vijayakumar, T. Sathish, Effect of 3D printing on supply chain management, Mater. Today: Proc. 21 (2020) 958–963 [Google Scholar]
  83. A. Beltagui, S. Gold, N. Kunz, G. Reiner, Rethinking operations and supply chain management in light of the 3D printing revolution, Int. J. Prod. Econ. 255 (2023) 108677 [Google Scholar]
  84. P. Kulkarni, A. Kumar, G. Chate, P. Dandannavar, Elements of additive manufacturing technology adoption in small- and medium-sized companies, Innov. Manag. Rev. 18 (2021) 400–416 [Google Scholar]
  85. G.S. Walsh, J. Przychodzen, W. Przychodzen, Supporting the SME commercialization process: the case of 3D printing platforms, Small Enterprise Res. 24 (2017) 257–273 [Google Scholar]
  86. A. Thomas, U. Mishra, A sustainable circular economic supply chain system with waste minimization using 3D printing and emissions reduction in plastic reforming industry, J. Clean. Prod. 345 (2022) 131128 [Google Scholar]
  87. J. Sun, W. Zhou, D. Huang, J.Y. Fuh, G.S. Hong, An overview of 3D printing technologies for food fabrication, Food Bioprocess Technol 8 (2015) 1605–1615 [Google Scholar]
  88. M. Mehrpouya, A. Dehghanghadikolaei, B. Fotovvati, A. Vosooghnia, S.S. Emamian, A. Gisario, The potential of additive manufacturing in the smart factory industrial 4.0: a review, Appl. Sci. 9 (2019) 3865 [Google Scholar]
  89. H.K. Chan, J. Griffin, J.J. Lim, F. Zeng, A.S.F. Chiu, The impact of 3D printing technology on the supply chain: manufacturing and legal perspectives, Int. J. Prod. Econ. 205 (2018) 156–162 [Google Scholar]
  90. F. Tao, Q. Qi, L. Wang, A.Y.C. Nee, Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison, Engineering 5 (2019) 653–661 [Google Scholar]
  91. DHL. Digital Twins in Logistics: A DHL Perspective on the Impact of Digital Twins on the Logistics Industry 2019. DHL: San Francisco, CA, USA, 2019, Available at; [Google Scholar]
  92. L. Wang, T. Deng, Z.-J.M. Shen, H. Hu, Y. Qi, Digital twin-driven smart supply chain, Front. Eng. Manag. 9 (2022) 56–70 [Google Scholar]
  93. J. Cohen, A coefficient of agreement for nominal scales, Educ. Psycholog. Measur. 20 (1960) 37–46 [Google Scholar]
  94. A. Sharma, P. Zanotti, L.P. Musunur, Drive through robotics: Robotic automation for last mile distribution of food and essentials during pandemics, IEEE Access 8 (2020) 127190–127219 [Google Scholar]
  95. T. Binsfeld, B. Gerlach, Quantifying the benefits of digital supply chain twins—a simulation study in organic food supply chains, Logistics 6 (2022) 46 [Google Scholar]
  96. J. Spindler, T. Kec, T. Ley, Lead-time and risk reduction assessment of a sterile drug product manufacturing line using simulation, Comput. Chem. Eng. 152 (2021) 107401 [CrossRef] [Google Scholar]
  97. K.T. Park, Y.H. Son, S.D. Noh, The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control, Int. J. Product. Res. 59 (2021) 5721–5742 [Google Scholar]
  98. B. Gerlach, S. Zarnitz, B. Nitsche, F. Straube, Digital supply chain twins-conceptual clarification, use cases and benefits, Logistics 5 (2021) 86 [Google Scholar]
  99. C. Cimino, E. Negri, L. Fumagalli, Review of digital twin applications in manufacturing, Comput. Ind. 113 (2019) 103130 [CrossRef] [Google Scholar]
  100. G. Lugaresi, Z. Jemai, E. Sahin, Digital Twins for Supply Chains: Current Outlook and Future Challenges (2023) Proceedings/Recueil Des Communications Année 2023 hal-04137290. [Google Scholar]
  101. D. Bechtsis, N. Tsolakis, D. Vlachos, J.S. Srai, Intelligent autonomous vehicles in digital supply chains: a framework for integrating innovations towards sustainable value networks, J. Cleaner Prod. 181 (2018) 60–71 [Google Scholar]
  102. A.K. Tyagi, S.U. Aswathy, Autonomous intelligent vehicles (AIV): research statements, open issues, challenges and road for future, Int. J. Intell. Networks 2 (2021) 83–102 [Google Scholar]
  103. IBM, How does blockchain work (2018). Available at: (accessed 5 November 2018) [Google Scholar]
  104. N. Bahnes, S. Relvas, H. Haffaf, Cooperation between intelligent autonomous vehicles to enhance container terminal operations, J. Innov. Digit. Ecosyst. 3 (2016) 22–29 [Google Scholar]
  105. D. Bechtsis, N. Tsolakis, D. Vlachos, E. Iakovou, Sustainable supply chain management in the digitalisation era: the impact of automated guided vehicles, J. Cleaner Prod. 142 (2017) 3970–3984 [Google Scholar]
  106. Reiss, B. Pitts, Objects may be closer than they appear: how autonomous vehicles will bring value in a truly intelligent supply chain, Logist. Manag. 60 (2021) 18 [Google Scholar]
  107. D. Tsolakis, D. Bechtsis, J.S. Srai, Intelligent autonomous vehicles in digital supply chains: from conceptualisation, to simulation modelling, to real-world operations, Bus. Process Manag. J. 25 (2019) 414–437 [CrossRef] [Google Scholar]
  108. K. Sanogo, A.M. Benhafssa, M. Sahnoun, B. Bettayeb, M. Abderrahim, A. Bekrar, A multi-agent system simulation based approach for collision avoidance in integrated job-shop scheduling problem with transportation tasks, J. Manuf. Syst. 68 (2023) 209–226 [Google Scholar]
  109. T. Walter, C. Zhenzhen Wang, O. Guillaud, E. Cotte, A. Pasquer, O. Vinet, G. Poncet, T. Ponchon, J.C. Saurin, Management of desmoid tumours: a large national database of familial adenomatous patients shows a link to colectomy modalities and low efficacy of medical treatments, United Eur. Gastroenterol. J. 5 (2017) 735–741 [Google Scholar]
  110. M.C. Cronin, M.A. Awasthi, M.A. Conway, D. O'Riordan, J. Walsh, Design and development of a material handling system for an autonomous intelligent vehicle for flexible manufacturing, Proc. Manufactur. 51 (2020) 493–500 [Google Scholar]
  111. C.R. Carter, D.S. Rogers, A framework of sustainable supply chain management: moving toward new theory, Int. J. Phys. Distrib. Logist. Manag. 38 (2008) 360–387 [Google Scholar]
  112. L. Chen, S. Teng, B. Li, X. Na, Y. Li, Z. Li, J. Wang, D. Cao, N. Zheng, F.-Y. Wang, Milestones in autonomous driving and intelligent vehicles—Part II: Perception and planning, IEEE Trans Syst. Man Cybern 53 (2023) 1–15 [Google Scholar]
  113. P. Kittipanya-Ngam, K.H. Tan, A framework for food supply chain digitalization: lessons from Thailand, Prod. Plann. Control 31 (2020) 158–172 [Google Scholar]
  114. P.J. Sun, Privacy protection and data security in cloud computing: a survey, challenges, and solutions, IEEE Access 7 (2019) 147420–147452 [Google Scholar]
  115. J.P.B. Rodrigues, Â. Liberal, S.A. Petropoulos, I.C.F.R. Ferreira, M.B.P.P. Oliveira, Â. Fernandes, L. Barros, Agri-food surplus, waste and loss as sustainable biobased ingredients: a review, Molecules 27 (2022) 5200 [Google Scholar]
  116. FAO, Global Food Losses and Food Waste-Extent, Causes and Prevention. SAVE FOOD: An Initiative on Food Loss and Waste Reduction (2022). Available online: [Google Scholar]
  117. A.M. Ross, D.H. Rhodes, D.E. Hastings, Defining changeability: reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value, Syst. Eng. 11 (2008) 246–262 [Google Scholar]
  118. P. Soto-Acosta, Navigating uncertainty: post-pandemic issues on digital transformation, Inf. Syst. Manag. (2023) [Google Scholar]
  119. S. Akter, Big data and predictive analytics for supply chain and organizational performance, J. Bus. Res. 70 (2017) 308–317 [Google Scholar]
  120. H.L. Lee, V. Padmanabhan, S. Whang, The bullwhip effect in supply chains Sloan Management Review, 38, 93–102 (1997) [Google Scholar]
  121. Y. Zhan, K.H. Tan, An analytic infrastructure for harvesting big data to enhance supply chain performance, Eur. J. Oper. Res. 281 (2020) 559–574 [Google Scholar]
  122. J. Ahmad, A. Garg, G. Mustafa, A.A. Mohammed, M.Z. Ahmad, 3D printing technology as a promising tool to design nanomedicine-based solid dosage forms: contemporary research and future scope, Pharmaceutics 15 (2023) 1448 [Google Scholar]
  123. S. Sun, X. Wang, Y. Zhang, Sustainable traceability in the food supply chain: the impact of consumer willingness to pay, Sustainability 9 (2017) 999 [Google Scholar]
  124. M. Ahn, C. Huang, P.C. Huang, X. Zhong, J. Himmelreich, K. Desouza, R. Knepper, Cyber-physical innovations: cyber-infrastructure for research, cyber-physical architecture for real-time applications, autonomous vehicle (AV) governance and AI artifacts for public value, in: J. Lee, G.V. Pereira, S. Hwang (Eds.), Proceedings of the 22nd Annual International Conference on Digital Government Research: Digital Innovations for Public Values: Inclusive Collaboration and Community, DGO 2021 (pp.590–592). Article 3463721 (ACM International Conference Proceeding Series). Association for Computing Machinery (2021) [Google Scholar]
  125. W. Kim, S. Kim, J. Jeong, H. Kim, H. Lee, B.D. Youn, Digital twin approach for on-load tap changers using data-driven dynamic model updating and optimization-based operating condition estimation, Mech. Syst. Signal Process. 181 (2022) 109471 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.