Open Access
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 7
Number of page(s) 11
DOI https://doi.org/10.1051/mfreview/2024003
Published online 19 March 2024
  1. L. Li, M. Chakik, R. Prakash, A review of corrosion in aircraft structures and graphene-based sensors for advanced corrosion monitoring, Sensors, 21 (2021). https://doi.org/10.3390/s21092908 [Google Scholar]
  2. O.M. Ikumapayi, E.T. Akinlabi, J.D. Majumdar, Review on thermal, thermo-mechanical and thermal stress distribution during friction stir welding, Int. J. Mech. Eng. Technol. 9 (2018) 534–548. [Google Scholar]
  3. D. Mulaba-Kapinga, K.D. Nyembwe, O.M. Ikumapayi, E.T. Akinlabi, Mechanical, electrochemical and structural characteristics of friction stir spot welds of aluminium alloy 6063, Manuf. Rev. 7 (2020) 1–15. [Google Scholar]
  4. R.M. Leal, A. Loureiro, D.M. Rodrigues, I. Galvao, Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets, Sci. Technol. Weld. Join. 5 (2010) 654–660. [Google Scholar]
  5. D.G. Mohan, C. Wu, A review on friction stir welding of steels, Chin. J. Mech. Eng. (2021), https://doi.org/10.1186/s10033-021-00655-3 [Google Scholar]
  6. V.P. Singh, S.K. Patel, A. Ranjan, B. Kariachen, Recent research progress in solid state friction-stir welding of aluminium-magnesium alloys: a critical review, J. Mater. Res. Technol. 9 (2020) 6217–6256. [CrossRef] [Google Scholar]
  7. D.A. Caio-Palumbo, C. Isolda, G.D. Harcilio, P. Nadine, T. Bernard, V. Vincent, Multiscale electrochemical study of welded aluminium joined by friction stir welding, J. Electrochem. Soc. 164 (2017) 735–746. [Google Scholar]
  8. Y. Wang, H. Jiang, X. Wu, Q. Meng, Microstructure and mechanical property evolution of robotic friction stir-welded Al–Li alloys, Crystals 13 (2023) 582. [CrossRef] [Google Scholar]
  9. N.D.T. Pankaj, K.P. Pranav, Optimization of Friction stir welding parameters in joining dissimilar aluminium alloys using SPSS and Taguchi, J. Basic Appl. Eng. Res. 1 (2014) 25–27. [Google Scholar]
  10. E. Fereiduni, M. Movahedi, A.H. Kokabi, Aluminum/steel joints made by an alternative friction stir spot welding process, J. Mater. Process. Technol. 224 (2015) 1–10. [Google Scholar]
  11. M.V. Sezhian, K. Giridharan, D.P. Pushpanathan, G. Chakravarthi, B. Stalin, A. Karthick, P.M. Kumar, M. Bharani, Microstructural and mechanical behaviors of friction stir welded dissimilar AA6082-AA7075 joints, Adv. Mater. Sci. Eng. 2021 (2021) 4113895. [Google Scholar]
  12. T. Yoo, J. Yoon, K. Min, H. Lee, Effect of friction stir welding process parameters on mechanical properties and macro structure of Al-Li alloy, 2nd International Materials, Industrial, and Manufacturing Engineering Conference, February 4th -6th, Bali Indonesia, 2015. Retrieved on November 12 2017 from. http://www.sciencedirect.com. [Google Scholar]
  13. T.J. Lienert, W.L. Stellwag, J.B.B. Grimmett, R.W. Warke, Friction stir welding studies on mild steel, American welding society, Suppl. Weld. J. 35 (2013) 210–224. [Google Scholar]
  14. M.M. Hadi, M.M.H. Al-khafaji, A.D. Subhi, A numerical study of friction stir welding for AA5754 sheets to evaluate temperature profile and plastic strain, Eng. Technol. J. 40 (2022) 1683–1694. [Google Scholar]
  15. K.D. Bhatt, B. Pillai, Simulation of peak temperature and flow stresses during friction-stir welding of AA7050-T7451 aluminium alloy using hyper works, Int. J. Emerg. Technol. Adv. Eng. 2 (2012) 212–216. [Google Scholar]
  16. S. Jambulingam, Optimization of process parameters of friction stir welding for dissimilar aluminium alloys AA7075 and AA3014, Int. J. Emerg. Res. Eng. Sci. Technol. 2 (2015) 234–251. [Google Scholar]
  17. G. Amit, K.R. Punit, K.K. Atul, Optimization of friction-stir welding parameters for AA3003 aluminum alloy joints using response surface methodology, Int. J. Mech. Solids 12 (2017) 15–26. [Google Scholar]
  18. E.T. Akinlabi, E. Annelize, J.M. Patrick, Effect of travel speed on joint properties of dissimilar metal friction-stir welds, Second International Conference on Advances in Engineering and Technology, 20th -21st December, 2012, Noida, India, pp. 155–161. [Google Scholar]
  19. B.I. Attah, S.A. Lawal, K.C. Bala, O.M. Ikumapayi, O. Adedipe, R.P. Mahto, E.T. Akinlabi, Optimization and numerical analysis of friction stir welding parameters of AA7075-T651 and AA 1200-H19 using tapered tool, Int. J. Interact. Des. Manuf. (IJIDeM) (2023), https://doi.org/10.1007/s12008-023-01329-1. [Google Scholar]
  20. O.M. Ikumapayi, E.T. Akinlabi, J.D. Majumdar, O.S.I. Fayomi, S.A. Akinlabi, Corrosion study and quantitative measurement of crystallite size of high strength Aluminum hybrid composite developed via friction stir processing, Materialwiss. Werkstofftech. 51 (2020) 732–739. [CrossRef] [Google Scholar]
  21. F. Zhang, J. Pan, Recent development of corrosion protection strategy based on mussel adhesive protein, Front. Mater. 6 (2019). https://doi.org/10.3389/fmats.2019.00207. [Google Scholar]
  22. B.X. Vuong, T.L. Huynh, T.Q.N. Tran, S.V.P. Vattikuti, T.D. Manh, P. Nguyen-Tri, A.T. Nguyen, P. Van Hien, N. Nguyen Dang, Corrosion inhibition of carbon steel in hydrochloric acid solution by self-formation of a Malpighia glabra leaf extract-based organic film, Mater. Today Commun. 31 (2022) 103641. [CrossRef] [Google Scholar]
  23. X. Yuan, X. Wang, Y. Cao, H. Yang, Natural passivation behaviour and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution, J. Mater. Res. Technol. 9 (2020) 12378–12390. [CrossRef] [Google Scholar]
  24. M. Raturi, A. Bhattacharya, Mechanical strength and corrosion behavior of dissimilar friction stir welded AA7075-AA2014 joints, Mater. Chem. Phys. 262 (2021) 124338. [CrossRef] [Google Scholar]
  25. S.Z. Salleh, A.H. Yusoff, S.K. Zakaria, M.A.A. Taib, A. Abu Seman, M.N. Masri, M. Mohamad, S. Mamat, S. Ahmad Sobri, A. Ali, P. Ter. Teo, Plant extracts as green corrosion inhibitor for ferrous metal alloys: a review, J. Clean. Prod. 304 (2021). [Google Scholar]
  26. O.M. Ikumapayi, E.T. Akinlabi, Recent advances in keyhole defect repairs via refilling friction stir spot welding, Mater. Today: Proc. 18 (2019) 2201–2208. [CrossRef] [Google Scholar]
  27. R.O. Medupin, K. Ukoba, K.O. Yoro, T.-C. Jen, Sustainable approach for corrosion control in mild steel using plant-based inhibitors: a review, Mater. Today Sustain. 22 (2023) 100373. [CrossRef] [Google Scholar]
  28. Y. Wang, J. Hu, Y. Ma, Z. Zhang, H. Huang, J. Wei, S. Yin, Q. Yu, A novel high-efficient MOFs-based corrosion inhibitor for the reinforcing steel in cement extract, Constr. Build. Mater. 317 (2022) 125946. [CrossRef] [Google Scholar]
  29. F.B. Ferreira, P. Vilaça, J.P. Oliveira, T.G. Santos, P.L. In, Assessment of the energetic efficiency of friction stir welding /processing. 103 (2023) 298–308. [Google Scholar]
  30. C.M. Barr, S. Thomas, J.L. Hart, W. Harlow, E. Anber, M.L. Taheri, Tracking the evolution of intergranular corrosion through twin-related domains in grain boundary networks, Npj Mater. Degrad. August 2017, (2018) 1–10. [Google Scholar]
  31. O.M. Ikumapayi, E.T. Akinlabi, J.D. Majumdar, S.A. Akinlabi, Characterization of high strength aluminium – based surface matrix composite reinforced with low-cost PKSA fabricated by friction stir processing, Mater. Res. Express. 6 (2019) 1–27. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.