Open Access
Review
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 6
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2024005
Published online 19 March 2024
  1. C. Rinaldi, A. Chaves, S. Elborai, X.T. He, M. Zahn, Magnetic fluid rheology and flows, Curr. Opin. Colloid Interface Sci. 10 (2005) 141–157 [CrossRef] [Google Scholar]
  2. M.T. López-López, P. Kuzhir, S. Lacis, G. Bossis, F. González-Caballero, J.D. Durán, Magnetorheology for suspensions of solid particles dispersed in ferrofluids, J. Phys.: Condens. Matter. 18 (2006) S2803 [CrossRef] [Google Scholar]
  3. J. Rabinow, The magnetic fluid clutch, Electr. Eng. 67 (1948) 1167–1167 [CrossRef] [Google Scholar]
  4. L. Rodríguez-Arco, M.T. López-López, P. Kuzhir, G. Bossis, J.D. Duran, Optimizing the magnetic response of suspensions by tailoring the spatial distribution of the particle magnetic material, ACS Appl. Mater. Interfaces. 5 (2013) 12143–12147 [CrossRef] [Google Scholar]
  5. M.T. López-López, P. Kuzhir, G. Bossis, P. Mingalyov, Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties, Rheol. Acta. 47 (2008) 787–796 [Google Scholar]
  6. Y. Zhang, D. Li, H. Cui, J. Yang, A new modified model for the rheological properties of magnetorheological fluids based on different magnetic field, J. Magn. Magn. Mater. 500 (2020) 166377 [CrossRef] [Google Scholar]
  7. J.M. Ginder, L.C. Davis, Shear stresses in magnetorheological fluids: role of magnetic saturation, Appl. Phys. Lett. 65 (1994) 3410–3412 [CrossRef] [Google Scholar]
  8. M. Ashtiani, S.H. Hashemabadi, The effect of nano-silica and nano-magnetite on the magnetorheological fluid stabilization and magnetorheological effect, J. Intell. Mater. Syst. Struct. 26 (2015) 1887–1892 [CrossRef] [Google Scholar]
  9. P. Ranjan, R. Balasubramaniam, V.K. Jain, Analysis, design and synthesis of water-based magnetorheological fluid for CMMRF process, J. Micromanuf. 1 (2018) 45–52 [CrossRef] [Google Scholar]
  10. W. Zhu, X. Dong, H. Huang, M. Qi, Iron nanoparticles-based magnetorheological fluids: a balance between MR effect and sedimentation stability, J. Magn. Magn. Mater. 491 (2019) 165556 [CrossRef] [Google Scholar]
  11. S.B. Choi, Sedimentation stability of magnetorheological fluids: the state of the art and challenging issues, Micromachines. 13 (2022) 1904 [CrossRef] [Google Scholar]
  12. J. Roupec, L. Michal, Z. Strecker, M. Kubík, O. Macháček, H.J. Choi, Influence of clay-based additive on sedimentation stability of magnetorheological fluid, Smart Mater. Struct. 30 (2021) 027001 [Google Scholar]
  13. H. Ha, R. Thompson, B. Hwang, Enhanced sedimentation stability of carbonyl iron powders with hydrophilic siloxane polymer coatings in ethanol, J. Nat. Fibers. 20 (2023) 2166648 [CrossRef] [Google Scholar]
  14. A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics, Adv. Sci. 4 (2017) 1700036 [CrossRef] [Google Scholar]
  15. S. Kciuk, R. Turczyn, M. Kciuk, Experimental and numerical studies of MR damper with prototype magnetorheological fluid, J. Achiev. Mater. Manuf. Eng. 39 (2010) 53–59 [Google Scholar]
  16. S.K. Mangal, M. Kataria, A. Kumar, Synthesis of magneto rheological fluid, Int. J. Eng. Adv. Technol. 2 (2013) 20–25 [Google Scholar]
  17. A. Kumar, V. Chauhan, Preparation and rheological analysis of MR fluids, Int. J. Mech. Prod. Eng. Res. Dev. 10 (2020) 297–304 [Google Scholar]
  18. C. Fei, L. Haopeng, H. Mengmeng, T. Zuzhi, L. Aimin, Preparation of magnetorheological fluid with excellent sedimentation stability, Mater. Manuf. Process. 35 (2020) 1077–1083 [CrossRef] [Google Scholar]
  19. M. Sedlacik, V. Pavlinek, M. Lehocky, A. Mracek, O. Grulich, P. Svrcinova, A. Vesel, Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids, Colloids Surf. A: Physicochem. Eng. Asp. 387 (2011) 99–103 [CrossRef] [Google Scholar]
  20. W.H. Chuah, W.L. Zhang, H.J. Choi, Y. Seo, Magnetorheology of core-shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability, Macromolecules. 48 (2015) 7311–7319 [CrossRef] [Google Scholar]
  21. Y. Huang, Y. Jiang, X. Yang, R. Xu, Influence of oleic and lauric acid on the stability of magnetorheological fluids, J. Magn. 20 (2015) 317–321 [CrossRef] [Google Scholar]
  22. S.P. Rwei, P. Ranganathan, W.Y. Chiang, T.Y. Wang, The magnetorheological fluid of carbonyl iron suspension blended with grafted MWCNT or graphene, J. Magn. Magn. Mater. 443 (2017) 58–66 [CrossRef] [Google Scholar]
  23. H. Cheng, M. Wang, C. Liu, N.M. Wereley, Improving sedimentation stability of magnetorheological fluids using an organic molecular particle coating, Smart Mater. Struct. 27 (2018) 075030 [Google Scholar]
  24. Y.Q. Guo, C. Li Sun, Z.D. Xu, H. Jing, Preparation and tests of MR fluids with CI particles coated with MWNTs, Fron Mater. 5 (2018) 1–8 [CrossRef] [Google Scholar]
  25. A. Ronzova, M. Sedlacik, M. Cvek, Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance, Soft Matter. 17 (2021) 1299–1306 [Google Scholar]
  26. C. Shen, Y. Oda, M. Matsubara, J. Yabuki, S. Yamanaka, H. Abe, K. Kanie, Magnetorheological fluids with surface-modified iron oxide magnetic particles with controlled size and shape, ACS Appl. Mater. Interfaces. 13 (2021) 20581–20588 [CrossRef] [Google Scholar]
  27. C. Fei, T. Zuzhi, W. Xiangfan, Novel process to prepare high-performance magnetorheological fluid based on surfactants compounding, Mater. Manuf. Process. 30 (2015) 210–215 [CrossRef] [Google Scholar]
  28. T. Zuzhi, C. Fei, W. Xiangfan, W. Jian, A novel preparation process for magnetorheological fluid with high sedimentation stability, Mater. Manuf. Process. 31 (2016) 2030–2036 [CrossRef] [Google Scholar]
  29. J. Yang, H. Yan, J. Dai, Z. Hu, H. Zhang, The rheological response of carbonyl iron particles suspended in mineral oil solution of 12-hydroxy stearic acid, J. Rheol. 61 (2017) 515–524 [CrossRef] [Google Scholar]
  30. K.J. Son, A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids, Korea-Aust. Rheol. J. 30 (2018) 29–39 [CrossRef] [Google Scholar]
  31. A.H. Dorosti, M. Ghatee, M. Norouzi, Preparation and characterization of water-based magnetorheological fluid using wormlike surfactant micelles, J. Magn. Magn. Mater. 498 (2020) 166193 [CrossRef] [Google Scholar]
  32. C. Fei, L. Haopeng, H. Mengmeng, T. Zuzhi, L. Aimin, Preparation of magnetorheological fluid with excellent sedimentation stability, Mater. Manuf. Process. 35 (2020) 1077–1083 [CrossRef] [Google Scholar]
  33. C. Fang, B.Y. Zhao, Q. Wu, N. Liu, K.A. Hu, The effect of the green additive guar gum on the properties of the magnetorheological fluid, Smart Mater. Struct. 14 (2004) N1–N5 [Google Scholar]
  34. S.T. Lim, H.J. Choi, M.S. Jhon, Magnetorheological characterization of carbonyl iron-organoclay suspensions, IEEE Trans. Magn. 41 (2005) 3745–3747 [CrossRef] [Google Scholar]
  35. S.H. Piao, W.L. Zhang, H.J. Choi, Magnetic carbonyl iron suspension with sepiolite additive and its magnetorheological property, IEEE Trans. Magn. 50 (2013) 1–4 [Google Scholar]
  36. C.H. Hong, H.J. Choi, Effect of halloysite clay on magnetic carbonyl iron-based magnetorheological fluid, IEEE Trans. Magn. 50 (2014) 1–4 [Google Scholar]
  37. E. Esmaeilnezhad, H.J. Choi, M. Schaffie, M. Gholizadeh, M. Ranjbar, S.H. Kwon, Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid, J. Magn. Magn. Mater. 444 (2017) 161–167 [CrossRef] [Google Scholar]
  38. M.N. Aruna, M.R. Rahman, S. Joladarashi, H. Kumar, Investigation of sedimentation, rheological, and damping force characteristics of carbonyl iron magnetorheological fluid with/without additives, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 1–13 [CrossRef] [Google Scholar]
  39. C.S. Maurya, C. Sarkar, Synthesis and characterization of novel flake-shaped carbonyl iron and water-based magnetorheological fluids using laponite and oleic acid with enhanced sedimentation stability, J. Intell. Mater. Syst. Struct. 32 (2021) 1624–1639 [CrossRef] [Google Scholar]
  40. G.T. Ngatu, N.M. Wereley, Viscometric and sedimentation characterization of bidisperse magnetorheological fluids, IEEE Trans. Magn. 43 (2007) 2474–2476 [CrossRef] [Google Scholar]
  41. G.R. Iglesias, M.T. López-López, J.D.G. Durán, F. González-Caballero, A.V. Delgado, Dynamic characterization of extremely bidisperse magnetorheological fluids, J. Colloid Interface Sci. 377 (2012) 153–159 [CrossRef] [Google Scholar]
  42. I. Jönkkäri, M. Isakov, S. Syrjälä, Sedimentation stability and rheological properties of ionic liquid-based bidisperse magnetorheological fluids, J. Intell. Mater. Syst. Struct. 26 (2015) 2256–2265 [CrossRef] [Google Scholar]
  43. G. Wang, F. Zhou, Z. Lu, Y. Ma, X. Li, Y. Tong, X. Dong, Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid, J. Ind. Eng. Chem. 70 (2019) 439–446 [CrossRef] [Google Scholar]
  44. J. Choi, S. Han, H. Kim, E.H. Sohn, H.J. Choi, Y. Seo, Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications, ACS Appl. Nano Mater. 2 (2019) 6939–6947 [CrossRef] [Google Scholar]
  45. M. He, Y. Zeng, F. Zhou, G. Kong, Y. Lu, W. Chen, G. Wang, MnFe2O4 nanoparticles anchored on the surface of MgAl-layered double hydroxide nanoplates for stable magnetorheological fluids, J. Mol. Liq. 319 (2020) 114098 [CrossRef] [Google Scholar]
  46. W. Zhu, X. Dong, H. Huang, M. Qi, Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability, J. Magn. Magn. Mater. 491 (2019) 165556 [CrossRef] [Google Scholar]
  47. J.H. Park, B.D. Chin, O.O. Park, Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion, J. Colloid Interface Sci. 240 (2001) 349–354 [CrossRef] [Google Scholar]
  48. A. Hajalilou, S.A. Mazlan, H. Lavvafi, K. Shameli, in Field responsive fluids as smart materials, Edition Number 1 (Springer Nature Singapore 2016) [Google Scholar]
  49. E. Esmaeilnezhad, H.J. Choi, M. Schaffie, M. Gholizadeh, M. Ranjbar, Polymer coated magnetite-based magnetorheological fluid and its potential clean procedure applications to oil production, J. Clean. Prod. 171 (2018) 45–56 [CrossRef] [Google Scholar]
  50. V. Kumar, R. Kumar, H. Kumar, Rheological characterization and performance evaluation of magnetorheological finishing fluid, J. Appl. Fluid Mech. 13 (2020) 185–197 [CrossRef] [Google Scholar]
  51. D. Susan-Resiga, L. Vékás, Ferrofluid based composite fluids: magnetorheological properties correlated by Mason and Casson numbers, J. Rheol. 61 (2017) 401–408 [CrossRef] [Google Scholar]
  52. T. Hayat, S.A. Shehzad, A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. 33 (2012) 1301–1312 [CrossRef] [MathSciNet] [Google Scholar]
  53. A.V. Anupama, V. Kumaran, B. Sahoo, Steady-shear magnetorheological response of fluids containing solution-combustion-synthesized Ni-Zn ferrite powder, Adv. Powder Technol. 29 (2018) 2188–2193 [CrossRef] [Google Scholar]
  54. K.P. Hong, K.H. Song, M.W. Cho, S.H. Kwon, H.J. Choi, Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid, J. Intell. Mater. Syst. Struct. 29 (2018) 137–146 [CrossRef] [Google Scholar]
  55. T. Plachy, E. Kutalkova, M. Sedlacik, A. Vesel, M. Masar, I. Kuritka, Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions, J. Ind. Eng. Chem. 66 (2018) 362–369 [CrossRef] [Google Scholar]
  56. D. Cruze, H. Gladston, S. Loganathan, T. Dharmaraj, S.M. Solomon, Study on Magnatec oil-based MR fluid and its damping efficiency using MR damper with various annular gap configurations, Energy, Ecol. Environ. 6 (2021) 44–54 [CrossRef] [Google Scholar]
  57. N. Jahan, S. Pathak, K. Jain, R.P. Pant, Enhancement in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid, Colloids Surf. A: Physicochem. Eng. Asp. 529 (2017) 88–94 [CrossRef] [Google Scholar]
  58. S.H. Kwon, H.S. Jung, H.J. Choi, Z. Strecker, J. Roupec, Effect of octahedral typed iron oxide particles on magnetorheological behavior of carbonyl iron dispersion, Colloids Surf. A: Physicochem. Eng. Asp. 555 (2018) 685–690 [CrossRef] [Google Scholar]
  59. H.P. Li, F. Chen, C.H. Liu, Z.Z. Tian, Error analysis and optimization of shear yield stress model for magnetorheological fluid, Arab. J. Sci. Eng. 44 (2019) 7779–7787 [CrossRef] [Google Scholar]
  60. N. Mohamad, S.A. Mazlan, Ubaidillah, S.B. Choi, F. Imaduddin, S.A. Abdul Aziz, The field-dependent viscoelastic and transient responses of plate-like carbonyl iron particle based magnetorheological greases, J. Intell. Mater. Syst. Struct. 30 (2019) 788–797 [CrossRef] [Google Scholar]
  61. S.H. Kwon, S.M. Na, A.B. Flatau, H.J. Choi, Fe-Ga alloy based magnetorheological fluid and its viscoelastic characteristics, J. Ind. Eng. Chem. 82 (2020) 433–438 [CrossRef] [Google Scholar]
  62. J. Qiu, Y. Luo, Y. Li, J. Luo, Z. Su, Y. Wang, Research on a mechanical model of magnetorheological fluid different diameter particles, Nanotechnol. Rev. 11 (2021) 158–166 [CrossRef] [MathSciNet] [Google Scholar]
  63. S. Chen, D. Li, Control of magnetic particle size in ferrofluid and its effect on rheological properties, Chin. J. Mech. Eng. 35 (2022) 1–9 [CrossRef] [Google Scholar]
  64. Y. Rabbani, N. Hajinajaf, M. Shariaty-Niassar, The effect of microparticles/nanoparticles surface modification on the magnetorheological fluid properties: a review, J. Intell. Mater. Syst. Struct. 34 (2023) 1715–1738 [CrossRef] [Google Scholar]
  65. J.S. Kumar, P.S. Paul, G. Raghunathan, D.G. Alex, A review of challenges and solutions in the preparation and use of magnetorheological fluids, Int. J. Mech. Mater. Eng. 14 (2019) 1–18 [CrossRef] [Google Scholar]
  66. D. Wang, B. Zi, Y. Zeng, F. Xie, Y. Hou, Measurement of temperature-dependent mechanical properties of magnetorheological fluids using a parallel disk shear stress testing device, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231 (2017) 1725–1737 [Google Scholar]
  67. M. McKee, F. Gordaninejad, X. Wang, Effects of temperature on performance of compressible magnetorheological fluid suspension systems, J. Intell. Mater. Syst. Struct. 29 (2018) 41–51 [CrossRef] [Google Scholar]
  68. J. Ji, X. Wu, Z. Tian, F. Xie, F. Chen, H. Li, A novel magnetorheological fluid with high-temperature resistance, Materials. 16 (2023) 4207 [CrossRef] [Google Scholar]
  69. A.K. Kariganaur, H. Kumar, M. Arun. Influence of temperature on magnetorheological fluid properties and damping performance, Smart Mater. Struct. 31 (2022) 055018 [Google Scholar]
  70. P. Forte, M. Paternò, E. Rustighi, A magnetorheological fluid damper for rotor applications, Int. J. Rotating Mach. 10 (2004) 175–182 [CrossRef] [Google Scholar]
  71. M.M. Rashid, M.A. Hussain, N.A. Rahim, Application of magneto-rheological damper for car suspension control, J. Appl. Sci. 6 (2006) 933–938 [CrossRef] [Google Scholar]
  72. J.H. Yoo, N.M. Wereley, Design of a high-efficiency magnetorheological valve, J. Intell. Mater. Syst. Struct. 13 (2002) 679–685 [CrossRef] [Google Scholar]
  73. A. Grunwald, A.G. Olabi, Design of magneto-rheological (MR) valve, Sens. Actuators A: Phys. 148 (2008) 211–223 [Google Scholar]
  74. K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics. 18 (2008) 434–447 [CrossRef] [Google Scholar]
  75. B.K. Kumbhar, S.R. Patil, S.M. Sawant, Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application, Eng. Sci. Technol. Int. J. 18 (2015) 432–438 [Google Scholar]
  76. M. Jaindl, A. Köstinger, C. Magele, W. Renhart, Optimal design of a disk type magneto-rheologic fluid clutch, Prz. Elektrotech. 83 (2007) 25–29 [Google Scholar]
  77. K.H. Latha, P.U. Sri, N. Seetharamaiah, Design and manufacturing aspects of magneto-rheological fluid (MRF) clutch, Mater. Today: Proc. 4 (2017) 1525–1534 [CrossRef] [Google Scholar]
  78. F. Jonsdóttir, K.H. Gudmundsson, F. Thorsteinsson, O. Gutfleisch, in Proceedings of Annual Transactions of the Nordic Rheology Society, 17, 2009, (Nordic Rheology Society, 2009) [Google Scholar]
  79. T. Nguyen, S. Bapat, X. Wang, in proceedings of International Mechanical Engineering Congress and Exposition, 2016 (ASME, 2017), V04AT05A022 [Google Scholar]
  80. N.H.D. Nordin, A.G.A. Muthalif, M.K.M. Razali, Control of transtibial prosthetic limb with magnetorheological fluid damper by using a fuzzy PID controller, J. Low Fr eq. Noise Vib. Active Control. 37 (2018) 1067–1078 [CrossRef] [Google Scholar]
  81. G. Liu, F. Gao, D. Wang, W.H. Liao, Medical applications of magnetorheological fluid: a systematic review, Smart Mater. Struct. 31 (2022) 043002 [Google Scholar]
  82. S. Xiu, R. Wang, B. Sun, L. Ma, W. Song, Preparation and experiment of magnetorheological polishing fluid in reciprocating magnetorheological polishing process, J. Intell. Mater. Syst. Struct. 29 (2018) 125–136 [CrossRef] [Google Scholar]
  83. J. Guo, C. Yang, C. Xue, P. Song, Material removal mechanism and MR fluid for magnetorheological finishing of an RSA-6061 aluminum alloy mirror, Appl. Opt. 61 (2022) 10098–10104 [CrossRef] [Google Scholar]
  84. M. Srivastava, P.M. Pandey, G.A. Basheed, R.P. Pant, Synthesis and characterization of the rheological behavior of MR fluid for polishing silicon wafer using double-disc chemical-assisted magneto-rheological finishing process, J. Magn. Magn. Mater. 534 (2021) 168044 [CrossRef] [Google Scholar]
  85. A.M. Aly, Vibration control of buildings using magnetorheological damper: a new control algorithm, J. Eng. 2013 (2013) 1–10 [Google Scholar]
  86. D.D. Li, D.F. Keogh, K. Huang, Q.N. Chan, A.C. Yuen, C. Menictas, G.H. Yeoh, Modeling the response of magnetorheological fluid dampers under seismic conditions, Appl. Sci. 9 (2019) 4189 [CrossRef] [Google Scholar]
  87. F. Behbahani, U. Khairuddin, R. Yusof, Application of magneto rheological damper system in warren truss bridge structure, J. Adv. Res. Fluid Mech. Therm. Sci. 76 (2020) 17–29 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.