Open Access
Issue
Manufacturing Rev.
Volume 11, 2024
Article Number 5
Number of page(s) 10
DOI https://doi.org/10.1051/mfreview/2024004
Published online 19 March 2024
  1. A.O. Adegbenjo et al., Dependence of fracture patterns in spark plasma sintered irregular shaped Ti6Al4V powders on densification, Procedia Manuf. 7 (2017) 567–572 [CrossRef] [Google Scholar]
  2. V. Amigó et al., Microstructural evolution of Ti-6Al-4V during the sintering of microspheres of Ti for orthopedic implants, J. Mater. Process. Technol. 141 (2003) 117–122 [CrossRef] [Google Scholar]
  3. R. Balasubramanian et al., Development of nanostructured titanium implants for biomedical implants-a short review, Mater. Today: Proc. 46 (2021) 1195–1200 [CrossRef] [Google Scholar]
  4. Y. Cao et al., In situ synthesis of TiB/Ti6Al4V composites reinforced with nano TiB through SPS, Mater. Trans. 56 (2015) 259–263 [CrossRef] [Google Scholar]
  5. O.A. Ogunmefun et al., A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques, J. Alloys Comp. (2023) 170407 [CrossRef] [Google Scholar]
  6. J. Luan et al., Improved ductility and oxidation resistance of cast Ti-6Al-4V alloys by microalloying, J. Alloys Comp. 602 (2014) 235–240 [CrossRef] [Google Scholar]
  7. V. Vijay et al., Review of various surface treatment techniques on titanium alloys and their protective effects against corrosion, J. Surf. Sci. Technol. 23 (2007) 49 [Google Scholar]
  8. S.C. Tjong, Y.-W. Mai, Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites, Compos. Sci. Technol. 68 (2008) 583–601 [CrossRef] [Google Scholar]
  9. A. Lisiecki, J. Piwnik, Tribological characteristic of titanium alloy surface layers produced by diode laser gas nitriding, Arch. Metall. Mater. 61 (2016) 543–552 [CrossRef] [Google Scholar]
  10. G. Welsch, R. Boyer, E. Collings, Materials properties handbook: titanium alloys, ASM International, 1993 [Google Scholar]
  11. J. Chevalier et al., The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc. 92 (2009) 1901–1920 [CrossRef] [Google Scholar]
  12. A.K. Gain, L. Zhang, M.Z. Quadir, Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders, Mater. Sci. Eng.: A, 662 (2016) 258–267 [CrossRef] [Google Scholar]
  13. J.-H. Shin, S.-H. Hong, Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics, J. Eur. Ceram. Soc. 34 (2014) 1297–1302 [CrossRef] [Google Scholar]
  14. A. Sayyadi-Shahraki et al., Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites, J. Alloys Comp. 776 (2019) 798–806 [CrossRef] [Google Scholar]
  15. F. Lange, L. Falk, B. Davis, Structural ceramics based on Si3N4-ZrO2 (+ Y2O3) compositions, J. Mater. Res. 2 (1987) 66–76 [CrossRef] [Google Scholar]
  16. H. Attar et al., Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting, Mater. Sci. Eng.: A, 688 (2017) 20–26 [CrossRef] [Google Scholar]
  17. S. Ehtemam-Haghighi, G. Cao, L.-C. Zhang, Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions, J. Alloys Comp. 692 (2017) 892–897 [CrossRef] [Google Scholar]
  18. M.D. Hayat et al., Titanium metal matrix composites: an overview, Compos. Part A: Appl. Sci. Manuf. 121 (2019) 418–438 [CrossRef] [Google Scholar]
  19. S.O. Akinwamide et al., Characterization of pulse electric current sintered Ti-6Al-4V ternary composites: Role of YSZ-Si3N4 ceramics addition on structural modification and hydrogen desorption, Mater. Today Commun. 36 (2023) 106706 [CrossRef] [Google Scholar]
  20. F. Kgoete et al., Influence of Si3N4 on Ti-6Al-4V via spark plasma sintering: Microstructure, corrosion and thermal stability, J. Alloys Comp. 763 (2018) 322–328 [CrossRef] [Google Scholar]
  21. B.A. Obadele, O.O. Ige, P.A. Olubambi, Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering, J. Alloys Comp. 710 (2017) 825–830 [CrossRef] [Google Scholar]
  22. H. Yang et al., Reinforcement size dependence of load bearing capacity in ultrafine-grained metal matrix composites, Metall. Mater. Trans. A, 48 (2017) 4385–4392 [CrossRef] [Google Scholar]
  23. P. Maurya et al., Review on study of internal load transfer in metal matrix composites using diffraction techniques, Mater. Sci. Eng.: A, 840 (2022) 142973 [CrossRef] [Google Scholar]
  24. B.A. Obadele et al., Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating, Appl. Surf. Sci. 345 (2015) 99–108 [CrossRef] [Google Scholar]
  25. J. Rakotoniaina et al., Distribution and formation of silicon carbide and silicon nitride precipitates in block-cast multicrystalline silicon, in: Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 2005 [Google Scholar]
  26. A.M. Okoro et al., Nanoindentation studies of the mechanical behaviours of spark plasma sintered multiwall carbon nanotubes reinforced Ti6Al4V nanocomposites, Mater. Sci. Eng.: A, 765 (2019) 138320 [CrossRef] [Google Scholar]
  27. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20 [CrossRef] [Google Scholar]
  28. A. Miklaszewski, D. Garbiec, K. Niespodziana, Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering, Adv. Powder Technol. 29 (2018) 50–57 [CrossRef] [Google Scholar]
  29. A. Babapoor et al., Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide, Ceram. Int. 44 (2018) 14541–14546 [CrossRef] [Google Scholar]
  30. S. Jeje et al., Effect of temperature on densification, microstructural evolution and mechanical properties of Ti-5Al-1Mo developed via spark plasma sintering, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019 [Google Scholar]
  31. J.H. Park et al., Densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid, J. Am. Ceram. Soc. 82 (1999) 3037–3042 [CrossRef] [Google Scholar]
  32. D.M. Jarząbek, The impact of weak interfacial bonding strength on mechanical properties of metal matrix-ceramic reinforced composites, Compos. Struct. 201 (2018) 352–362 [CrossRef] [Google Scholar]
  33. A.L. Rominiyi, P.M. Mashinini, Nanoindentation study of mechanical and wear properties of spark plasma sintered Ti-6Ni-xTiCN composites, Ceram. Int. 49 (2023) 2194–2203 [CrossRef] [Google Scholar]
  34. E. Shankar, S.B. Prabu, Microstructure and mechanical properties of Ti (C, N) based cermets reinforced with different ceramic particles processed by spark plasma sintering, Ceram. Int. 43 (2017) 10817–10823 [CrossRef] [Google Scholar]
  35. T. Sritharan, F. Boey, A. Srinivas, Synthesis of complex ceramics by mechanochemical activation, J. Mater. Process. Technol. 192 (2007) 255–258 [CrossRef] [Google Scholar]
  36. L. Dong et al., Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties, Carbon 173 (2021) 41–53 [CrossRef] [Google Scholar]
  37. O.E. Falodun et al., Effect of TiN and TiCN additions on spark plasma sintered Ti-6Al-4V, Part. Sci. Technol. 38 (2020) 156–165 [CrossRef] [Google Scholar]
  38. A. Teber et al., Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application, Int. J. Refract. Metals Hard Mater. 30 (2012) 64–70 [CrossRef] [Google Scholar]
  39. O.E. Falodun et al., Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys, J. Alloys Comp. 736 (2018) 202–210 [CrossRef] [Google Scholar]
  40. D. François et al., Elastoviscoplasticity, Mechanical Behaviour of Materials: Volume II: Viscoplasticity, Damage, Fracture and Contact Mechanics, 1998, p. 1–83 [Google Scholar]
  41. D. François, A. Pineau, A. Zaoui, Mechanical behaviour of materials, Springer, 1998, Vol. 1 [Google Scholar]
  42. A. Basak et al., Challenges and recent developments on nanoparticle-reinforced metal matrix composites, Fillers and Reinforcements for Advanced Nanocomposites, 2015, p. 349–367 [CrossRef] [Google Scholar]
  43. Y. Zhao et al., Microstructure and mechanical properties of Ti-C-TiN-reinforced Ni204-based laser-cladding composite coating, Ceram. Int. 47 (2021) 5918–5928 [CrossRef] [Google Scholar]
  44. M. Ostolaza et al., Influence of process parameters on the particle-matrix interaction of WC-Co metal matrix composites produced by laser-directed energy deposition, Mater. Des. 223 (2022) 111172 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.