Open Access
Issue
Manufacturing Rev.
Volume 12, 2025
Article Number 6
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2024027
Published online 27 February 2025
  1. S. Spada, L. Ghibaudo, S. Gilotta, L. Gastaldi, M.P. Cavatorta, Investigation into the applicability of a passive upper-limb exoskeleton in automotive industry, Proc. Manufactur. 11 (2017) 1255–1262 [CrossRef] [Google Scholar]
  2. A.P. Irawan, D.W. Utama, E. Affandi Michael, H. Suteja, Product design of chairless chair based on local components to provide support for active workers, IOP Conf. Ser. Mater. Sci. Eng. 508 (2019) 12054 [Google Scholar]
  3. B.Q. Wang, C. Gong, K.D. Song, B.K. Yuan, Lower extremity exoskeleton design based on user requirement-oriented model, J. Mach. Des. 40 (2023) 127–133 [Google Scholar]
  4. R. Lin, C.Y. Lin, J. Wong, An application of multidimensional scaling in product semantics, Int. J. Ind. Ergon. 18 (1996) 193–204 [CrossRef] [Google Scholar]
  5. S.Z. Liu, The Concrete Applied Method Study of Product Semantics, Tongji University, Shang Hai (2006) [Google Scholar]
  6. D. Holdcroft, Saussure: Signs, System and Arbitrariness, Cambridge University Press (1991) [Google Scholar]
  7. K.B. Kahn, B. Nelson, P.G. Smith, Creating breakthrough products: innovation from product planning to program approval, J. Product Innov. Manag. 19 (2002) 461–463 [CrossRef] [Google Scholar]
  8. F. Sado, H.J. Yap, R.A.R. Ghazilla, N. Ahmad, Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works, Mechatronics 63 (2019) 102272 [CrossRef] [Google Scholar]
  9. R. Bogue, Robotic exoskeletons: a review of recent progress, Ind. Robot. 42 (2015) 5–10 [CrossRef] [Google Scholar]
  10. T. Zhang, H. Huang, A lower-back robotic exoskeleton: industrial handling augmentation used to provide spinal support, IEEE Robot. Autom. Mag. 25 (2018) 95–106 [CrossRef] [MathSciNet] [Google Scholar]
  11. I. Pacifico et al., An experimental evaluation of the proto-MATE: a novel ergonomic upper-limb exoskeleton to reduce workers' physical strain, IEEE Robot. Autom. Mag. 27 (2020) 54–65 [CrossRef] [Google Scholar]
  12. S. Chen et al., Wearable knee assistive devices for kneeling tasks in construction, IEEE/ASME Trans. Mechatr. 26 (2021) 1989–1996 [CrossRef] [Google Scholar]
  13. Y.T. Pan, Z. Lamb, K.A. Strausser, Effect of vibrotactile feedback for balance rehabilitation with the Ekso Bionics® exoskeleton, in 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob), Houston, TX, USA (2017), pp. 1–2 [Google Scholar]
  14. S.M. Malode, P. Zilpe, N. Ukani, S. Chakhole, Design of lower-limb Exoskeletal, in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India (2020), pp. 682–686 [CrossRef] [Google Scholar]
  15. H. Zhao, Y.X. Ren, Y.F. Zhao, Research on product semantics from the perspective of active aging, Pack. Eng. 44 (2023) 302–311+333 [Google Scholar]
  16. J. Van Leeuwen, H. Timmermans, Recent Advances in Design and Decision Support Systems in Architecture and Urban Planning (2004), pp. 113–125 [Google Scholar]
  17. A.J. Elliot, M.A. Maier, S.T.E. Fiske, Color psychology: effects of perceiving color on psychological functioning in humans, Annu. Rev. Psychol. 65 (2014) 95–120 [CrossRef] [Google Scholar]
  18. A.T. Asbeck, R.J. Dyer, A.F. Larusson, C.J. Walsh, Biologically-inspired soft exosuit, in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA (2013), pp. 1–8 [Google Scholar]
  19. A.T. Asbeck, K. Schmidt, I. Galiana, D. Wagner, C.J. Walsh, Multi-joint soft exosuit for gait assistance, in 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA (2015), pp. 6197–6204 [CrossRef] [Google Scholar]
  20. F. Hussain, R. Goecke, M. Mohammadian, Exoskeleton robots for lower limb assistance: a review of materials, actuation, and manufacturing methods, Proc. Inst. Mech. Eng. H 235 (2021) 095441192110320 [Google Scholar]
  21. V. Chauhan, A. Kumar, R. Sham, Magnetorheological fluids: a comprehensive review, Manufactur. Rev. 11 (2024) 6 [CrossRef] [EDP Sciences] [Google Scholar]
  22. M. Looze, T. Bosch, F. Krause, K. Stadler, L. O'Sullivan, Exoskeletons for industrial application and their potential effects on physical work load, Ergonomics 59 (2015) 1–11 [Google Scholar]
  23. Eurofound, G. Vermeylen, G. Houten, I. Niedhammer, I. Biletta, A. Parent-Thirion, M. Lyly-Yrjänäinen, J. Cabrita, 5th European working conditions survey − Overview report: Publications Office (2012) [Google Scholar]
  24. H. Lee, P.W. Ferguson, J. Rosen, Lower limb exoskeleton systems—overview, in Wearable Robotics, edited by J. Rosen and P.W. Ferguson, Academic Press (2020) 207–229 [CrossRef] [Google Scholar]
  25. M.B. Näf, K. Junius, M. Rossini, C. Rodriguez-Guerrero, B. Vanderborght, D. Lefeber, Misalignment compensation for full human-exoskeleton kinematic compatibility: state of the art and evaluation, Appl. Mech. Rev. 70 (2018) 050802 [Google Scholar]
  26. Z. Li, B. Huang, Z. Ye, M. Deng, C. Yang, Physical human-robot interaction of a robotic exoskeleton by admittance control, IEEE Trans. Ind. Electr. 65 (2023) 9614–9624 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.