Open Access
Issue
Manufacturing Rev.
Volume 12, 2025
Article Number 7
Number of page(s) 10
DOI https://doi.org/10.1051/mfreview/2025002
Published online 07 March 2025
  1. D.A. Konchus, E.I. Pryakhin, A.V. Sivenkov, Structural variations on the surface of metallic products at laser marking, CIS Iron Steel Rev. 22 (2021) 96–101 [CrossRef] [Google Scholar]
  2. X. Shu, J. Ding, The study on laser marking glass fiber material, Grand Altai Res. Educ. 1 (2020) 111–118 [Google Scholar]
  3. J. Wei, F. Ning, C. Bai, T. Zhang, G. Lu, H. Wang, X. Zhou, An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells, J. Mater. Chem. A 8 (2020) 5986–5994 [CrossRef] [Google Scholar]
  4. L. Huang, S. Xu, Z. Wang, K. Xue, J. Su, Y. Song, R. Ye, Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask, ACS Nano 14 (2020) 12045–12053 [CrossRef] [Google Scholar]
  5. S. Canaz Sevgen, F. Karsli, An improved RANSAC algorithm for extracting roof planes from airborne lidar data, Photogrammetr. Record 35 (2020) 40–57 [CrossRef] [Google Scholar]
  6. Z. Li, B. Zhang, K. Li, T. Zhang, X. Yang, A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures via laser marking, J. Mater. Chem. C 8 (2020) 3088–3096 [CrossRef] [Google Scholar]
  7. M. Pandey, B. Doloi, B. Bhattacharyya, Parametric study on laser marking of circular shape on stainless steel 304, Int. J. Precision Technol. 10 (2021) 3–22 [CrossRef] [Google Scholar]
  8. A. Korakana, S. Korakana, N. Ulmek, A.K. Pagare, Analyzing the effect of the parameters of laser etching process influencing the corrosion resistance and surface roughness of marine grade 316 stainless steel, Mater. Today: Proc. 32 (2020) 452–462 [CrossRef] [Google Scholar]
  9. N.G. Rasskazchikov, A.A. Polyakova, Researching of laser marking process and its optimization, Russ. Internet J. Ind. Eng. 7 (2020) 9–13 [Google Scholar]
  10. S. Cucerca, P. Didyk, H.P. Seidel, V. Babaei, Computational image marking on metals via laser induced heating, ACM Trans. Graphics 39 (2020) 1–70 [CrossRef] [Google Scholar]
  11. F. Eyahanyo, T. Rath, Investigations on the effects of low laser infrared marking energy and barcode size on 2D data matrix code detection on apples, Appl. Eng. Agric. 36 (2020) 829–838 [CrossRef] [Google Scholar]
  12. M. Drobnitzky, A. Vom Endt, A. Dewdney, A phantom based laser marking workflow to visually assess geometric image distortion in magnetic resonance guided radiotherapy, Phys. Imag. Radiat. Oncol. 17 (2021) 95–99 [CrossRef] [Google Scholar]
  13. F. Gönültaş, M.E. Atik, Z. Duran, Extraction of roof planes from different point clouds using RANSAC algorithm, Int. J. Environ. Geoinform. 7 (2020) 165–171 [CrossRef] [Google Scholar]
  14. R. Cao, Y. Wang, Y. Zhang, J. Mao, Optimal time selection for ISAR imaging of ship target via novel approach of centerline extraction with RANSAC algorithm, IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 15 (2022) 9987–10005 [CrossRef] [Google Scholar]
  15. J. Bai, D. Qin, L. Ma, M.B. Teklu, An improved RANSAC algorithm based on adaptive threshold for indoor positioning, Mobile Inform. Syst. 2021 (2021) 1–14 [Google Scholar]
  16. Z. Hossein-Nejad, M. Nasri, Natural image mosaicing based on redundant key point elimination method in SIFT algorithm and adaptive RANSAC method, Signal Data Process. 18 (2021) 147–162 [Google Scholar]
  17. S. Zhang, S. Li, B. Zhang, M. Peng, Integration of optimal spatial distributed tie-points in RANSAC-based image registration, Eur. J. Remote Sens. 53 (2020) 67–80 [CrossRef] [Google Scholar]
  18. A. Singh, S.K.P. Kushwaha, S. Nandy, H. Padalia, An approach for tree volume estimation using RANSAC and RHT algorithms from TLS dataset, Appl. Geomat. 14 (2022) 785–794 [CrossRef] [Google Scholar]
  19. J. Li, Q. Hu, M. Ai, Point cloud registration based on one-point Ransac and scale-annealing biweight estimation, IEEE Trans. Geosci. Remote Sens. 59 (2021) 9716–9729 [CrossRef] [Google Scholar]
  20. S. Afsal, A. Linsely, Optimal process of video stabilization using hybrid RANSAC-MSAC algorithm, Int. J. Intell. Syst. Appl. Eng. 11 (2023) 564–571 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.