Open Access
Issue
Manufacturing Rev.
Volume 12, 2025
Article Number 8
Number of page(s) 10
DOI https://doi.org/10.1051/mfreview/2025006
Published online 24 March 2025
  1. D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater. 7 (2011) 3515–3522 [Google Scholar]
  2. P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, J.W. Drelich, Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys, Adv. Healthc. Mater. 5 (2016) 1121–1140 [Google Scholar]
  3. K.K. Alaneme, J.C. Edwin-Ezeh, Mechanical characteristics and biocorrosionbehaviour of AS-CAST Zn-3Cu-Al alloys for cardiovascular bioabsorbable devices, Mater. Today: Proc. 62 (2022) S49–S56 [Google Scholar]
  4. D.G. Rizik, J.B. Hermiller, D.J. Kereiakes, Bioresorbable vascular scaffolds for the treatment of coronary artery disease: clinical outcomes from randomized controlled trials, Catheter. Cardiovasc. Interv. 88 (2016) 21–30 [Google Scholar]
  5. H.M. García-García, S. Vaina, K. Tsuchida, P.W. Serruys, Drug-eluting stents, Arch. Cardiol. Mex. 76 (2006) 297–319 [Google Scholar]
  6. M.I. Rahim, S. Ullah, P.P. Mueller, Advances and challenges of biodegradable implant materials with a focus on magnesium-alloys and bacterial infections, Metals 8 (2018) 1–14 [Google Scholar]
  7. J. Wang, J. Xu, B. Song, D.H. Chow, P. Shu-Hang Yung, L. Qin, Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits, Acta Biomater. 63 (2017) 393–410 [Google Scholar]
  8. E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation, J. Mech. Behav. Biomed. Mater. 60 (2016) 581–602 [Google Scholar]
  9. B. Liu, Y.F. Zheng, Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron, Acta Biomater. 7 (2011) 1407–1420 [CrossRef] [Google Scholar]
  10. H. Gong, K. Wang, R. Strich, J.G. Zhou, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy, J. Biomed. Master. Res. B 103 (2015) 1632–1640 [Google Scholar]
  11. D. Zindani, K. Kumar, J.P. Davim, Metallic biomaterials—a review, J. Mech. Behav. Biomed. Mater. (2019) 84–99 [Google Scholar]
  12. R. Yue, H. Huang, G.Z. Ke, H. Zhang, J. Pei, G.H. Xue, G.Y. Yuan, Microstructure, mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys, Mater. Charact. 134 (2017) 114–122 [Google Scholar]
  13. Z. Zhen, X. Liu, T. Huang, T. Xi, Y. Zheng, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys, Mater. Sci. Eng. C Mater. Biol. Appl. 46 (2015) 202–206 [Google Scholar]
  14. R. Yue, J. Niu, Y. Li, G. Ke, H. Huang, J. Pei, W. Ding, G. Yuan, In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications, Mater. Sci. Eng. C 113 (2020) 111007 [Google Scholar]
  15. A.J. Drelich, S. Zhao, R.J. Guillory 2nd, J.W. Drelich, J. Goldman, Long-term surveillance of zinc implant in murine artery: surprisingly steady biocorrosion rate, Acta Biomater. 58 (2017) 539–549 [Google Scholar]
  16. P.H. Lin, M. Sermersheim, H. Li, P.H.U. Lee, S.M. Steinberg, J. Ma, Zinc in wound healing modulation, J. Nutr. 10 (2017) 16 [Google Scholar]
  17. C.P. Larson, S.K. Roy, A.I. Khan, A.S. Rahman, F. Qadri, Zinc treatment to under-five children: applications to improve child survival and reduce burden of disease, J. Health Popul Nutr. 26 (2008) 356–365 [Google Scholar]
  18. G.K. Levy, J. Goldman, E. Aghion, The prospects of zinc as a structural material for biodegradable implants—a review paper, Metals 7 (2017) 402 [Google Scholar]
  19. H. Kabir, K. Munir, C. Wen, Y. Li, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives, Bioact. Mater. 6 (2021) 836–879 [Google Scholar]
  20. T. Shen, Q. Zhao, Y. Luo, T. Wang, Investigating the role of zinc in atherosclerosis: a review, Biomolecules 12 (2022) 1358 [Google Scholar]
  21. Y. Su, I. Cockerill, Y. Wang, Y.X. Qin, L. Chang, Y. Zheng, D. Zhu, Zinc-based biomaterials for regeneration and therapy, Trends Biotechnol. 37 (2019) 428–444 [CrossRef] [Google Scholar]
  22. P.K. Bowen, J. Drelich, J. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents, Adv. Mater. 25 (2013) 2577–2582 [Google Scholar]
  23. Y. Su, I. Cockerill, Y.D. Wang, Y.X. Qin, L.Q. Chang, Y.F. Zheng, D.H. Zhu, Zinc-based biomaterials for regeneration and therapy, Trends. Biotechnol. 37 (2019) 428–441 [CrossRef] [Google Scholar]
  24. H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr, Mater Des. 83 (2015) 95–102 [Google Scholar]
  25. Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academics Press (US); 2001. 7, Copper. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222312/#ddd00333 [Google Scholar]
  26. J. Niu, Z. Tang, H. Huang, J. Pei, H. Zhang, G. Yuan, W. Ding, Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application, Mater. Sci. Eng. C Mater. Biol. Appl. 69 (2016) 407–413 [Google Scholar]
  27. N. Yang, N. Sivamuni, N. Balasubramani, J. Venezuela, S. Almathami, C. Wen, M. Dargusch, The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn-Ca-Cu alloys for absorbable wound closure device applications, Bioact. Mater. 6 (2021) 1436–1451 [Google Scholar]
  28. Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants, Mater. Des. 117 (2017) 84–94 [Google Scholar]
  29. J. Jiang, Y. Qian, H. Huang, J. Niu, G. Yuan. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents, Biomater Adv. 133 (2022) 112652. [Google Scholar]
  30. X. Zhang, J. Niu, K.W-K. Yeung, H. Huang, Z. Gao, C. Chen, Q. Guan, G. Zhang, L. Zhang, G. Xue, G. Yuan, Developing Zn-2Cu-xLi (x < 0.1 wt %) alloys with suitable mechanical properties, degradation behaviors and cytocompatibility for vascular stents, Acta Biomater. (2024) [Google Scholar]
  31. M. Rondanelli, M.A. Faliva, G. Peroni, V. Infantino, C. Gasparri, G. Iannello, S. Perna, A. Riva, G. Petrangolini, A. Tartara, Essentiality of manganese for bone health: an overview and update, Nat. Prod. Commun. 16 (2021) 1934578 × 2110166 [Google Scholar]
  32. R.G. Lucchini, M. Aschner, Y. Kim, M. Šarić, Manganese. Handbook on the Toxicology of Metals (Fourth Edition)Academic Press, (2015), pp. 975–1011 [Google Scholar]
  33. P. Chen, J. Bornhorst, M. Aschner, Manganese metabolism in humans, Front. Biosci. (landmark edition) 23 (2018) 1655–1679 [CrossRef] [Google Scholar]
  34. Z.Z. Shi, J. Yu, X.-F. Liu, Micro alloyed Zn-Mn alloys: from extremely brittle to extraordinarily ductile at room temperature, Mater. Des. 144 (2018) 343–352 [Google Scholar]
  35. Z.Z. Shi, J. Yu, X.F. Liu, L.N. Wang, Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys, J. Mater. Sci. Technol. 34 (2018) 1008–1015 [Google Scholar]
  36. ASTM E18-16: Standard Test Method for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA 2016, www.astm.org [Google Scholar]
  37. ASTM E8M-15a: Standard Test Method for Tension testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2015, www.astm.org [Google Scholar]
  38. K.K. Alaneme, Fracture toughness (K1C) evaluation for dual phase low alloy steels using circumferential notched tensile (CNT) specimens, Mat. Res. 14 (2011) 155–160 [Google Scholar]
  39. ASTM-G102-89: Standard practice for calculation for corrosion rates and related information from electrochemical measurements. In: Annual Book of ASTM Standards. Philadelphia, PA, USA: American Society for Testing and Materials. 2010 [Google Scholar]
  40. E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Zinc-based alloys for degradable vascular stent applications, Acta Biomater. 71 (2018) 1–23 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.