Open Access
Review
Issue
Manufacturing Rev.
Volume 12, 2025
Article Number 9
Number of page(s) 16
DOI https://doi.org/10.1051/mfreview/2025003
Published online 31 March 2025
  1. H.O. Velesaca, J.A. Holgado-Terriza, J.M. Gutierrez Guerrero, Optimizing smart factory operations: a methodological approach to industrial system implementation based on opc-ua, E3S Web Conf. 532 (2024) 02004 https://doi.org/10.1051/e3sconf/202453202004 [Google Scholar]
  2. H.O. Velesaca, D. Carrasco, D. Carpio, J.A. Holgado-Terriza, J. Gutierrez-Guerrero, T. Toscano, A. Sappa, Anomaly detection in industrial production products using opc-ua and deep learning, in Int. Conf. on Data Science, Technology and Applications. INSTICC, SciTePress (2024), pp. 505–512, https://doi.org/10.5220/0012812600003756 [Google Scholar]
  3. A. Dogan, D. Birant, Machine learning and data mining in manufacturing, Exp. Syst. Appl. 166 (2021) 114060, https://doi.org/10.1016/j.eswa.2020.114060 [Google Scholar]
  4. H.O. Velesaca, A.D. Sappa, J.A. Holgado-Terriza, A case study of anomaly detection in tinplate lids: Supervised vs unsupervised approaches, in Int. Conf. on Automation, Robotics and Applications. IEEE (2025), pp. 1–5 [Google Scholar]
  5. M.C. May, J. Neidhöfer, T. Körner, L. Schäfer, G. Lanza, Applying natural language processing in manufacturing, Proc. CIRP 115 (2022) 184–189, https://doi.org/10.1016/j.procir.2022.10.071 [Google Scholar]
  6. S. Keele et al., Guidelines for performing systematic literature reviews in software engineering. In Technical Report, version 2.3 ESBE Technical Report, Keele University and Durham University, 1–15 (2007) [Google Scholar]
  7. A. Kofod-Petersen, How to do a structured literature review in computer science. Ver. 0.1. October, Copenhagen: Alexandra Institute, 1:28 (2012) [Google Scholar]
  8. D. Hästbacka, L. Barna, M. Karaila, Y. Liang, P. Tuominen, S. Kuikka, Device status information service architecture for condition monitoring using opc ua, in Emerging Technology and Factory Automation (2014), pp. 1–7, https://doi.org/10.1109/ETFA.2014.7005141 [Google Scholar]
  9. M. Rix, B. Kujat, C. Buscher, T. Meisen, S. Jeschke, A methodological implementation of a pervasive information system in high pressure die casting manufacturing. In Int. Conf. for Production Research, 1–8 (2015) [Google Scholar]
  10. S. Srinivasan, D. Grobmann, C. Del Vecchio, V. Emila Balas, L. Glielmo, Enabling technologies for enterprise wide optimization (2016), pp. 434–439, https://doi.org/10.1109/ICIINFS.2015.7399051 [Google Scholar]
  11. H. Fleischmann, S. Spreng, J. Kohl, D. Kiskalt, J. Franke, Distributed condition monitoring systems in electric drives manufacturing, in Int. Electric Drives Production Conference (2016), pp. 52–57, https://doi.org/10.1109/EDPC.2016.7851314 [Google Scholar]
  12. H. Sriyakul, D. Koolpiruck, W. Songkasiri, S. Nuratch, Cyber-physical system based production monitoring for tapioca starch production, in Int. Conf. on Information Science and Control Engineering (2017), pp. 926–930, https://doi.org/10.1109/ICISCE.2017.196 [Google Scholar]
  13. R. Cupek, J. Duda, D. Zonenberg, U. Chopa's, G. Dziedziel, M. Drewniak, Data mining techniques for energy efficiency analysis of discrete production lines, in Int. Conf. Computational Collective Intelligence. Springer (2017), pp. 292–301 [Google Scholar]
  14. M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, S. Punnekkat, Self-configuration of ieee 802.1 tsn networks, in Int. Conf. on Emerging Technologies and Factory Automation (2017), pp. 1–8, https://doi.org/10.1109/ETFA.2017.8247597 [Google Scholar]
  15. R. Hormann, S. Nikelski, S. Dukanovic, E. Fischer, Parsing and extracting features from opc unified architecture in industrial environments, in Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control, ISCSIC '18, New York, NY, USA (2018), https://doi.org/10.1145/3284557.3284741 [Google Scholar]
  16. F. Kretschmer, C. von Arnim, A. Lechler, A. Verl, Persistent data backend for opc ua namespaces in it infrastructures, Proc. CIRP 72 (2018) 174–178, https://doi.org/10.1016/j.procir.2018.03.233 [Google Scholar]
  17. C. Varlei Neu, I. Schiering, A. Zorzo, Simulating and detecting attacks of untrusted clients in opc ua networks, in Central European Cybersecurity Conference, CECC 2019, Association for Computing Machinery, New York, NY, USA (2019), https://doi.org/10.1145/3360664.3360675 [Google Scholar]
  18. F. Bosi, A. Corradi, G. Di Modica, L. Foschini, R. Montanari, L. Patera, M. Solimando, Enabling smart manufacturing by empowering data integration with industrial iot support, in Int. Conf. on Technology and Entrepreneurship (2020), pp. 1–8, https://doi.org/10.1109/ICTE47868.2020.9215538 [Google Scholar]
  19. F. Qin, W. Zeng, L. Li, R. Zhao, Construction of big data monitoring platform for teaching quality under intelligent education, in Int. Wireless Communications and Mobile Computing (2020), pp. 1594–1597, https://doi.org/10.1109/IWCMC48107.2020.9148224 [Google Scholar]
  20. S.G. Mathias, S. Schmied, D. Grossmann, Monitoring of discrete electrical signals from welding processes using data mining and IIoT approaches, in 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), Baltimore, MD, USA (2020), 911–916, https://doi.org/10.1109/ICTAI50040.2020.00142 [Google Scholar]
  21. J. Vrana, Nde perception and emerging reality: Nde 4.0 value extraction, Mater. Evaluat. 78 (2020) 835–851, https://doi.org/10.32548/2020.me-04131 [Google Scholar]
  22. J. Rubart, B. Lietzau, P. Söhlke, Analyzing manufacturing data in a digital control room making use of semantic annotations, in Int. Conf. on Semantic Computing (2020), pp. 434–438, https://doi.org/10.1109/ICSC.2020.00084 [Google Scholar]
  23. F. Arevalo, D. Sunaringtyas, C. Tito, C. Piolo, A. Schwung, Interactive visual procedure using an extended FMEA and mixed-reality (2020), pp. 286–291, https://doi.org/10.1109/ICIT45562.2020.9067296 [Google Scholar]
  24. F. Fuhrmann, A. Weber, S. Ladstätter, S. Dietrich, J. Rella, Multimodal interaction in the production line − an OPC UA-based framework for injection molding machinery, in Int. Conf. on Multimodal Interaction, ICMI' 21. Association for Computing Machinery, New York, NY, USA (2021), pp. 837–838, https://doi.org/10.1145/3462244.3481300 [Google Scholar]
  25. S. Soller, B. Fleischmann, M. Kranz, G. Holzl, Evaluation and adaption of maintenance prediction methods in mixed production line setups based on anomaly detection (2021), pp. 520–525, https://doi.org/10.1109/PerComWorkshops51409.2021.9430995 [Google Scholar]
  26. Y. Wu, B. Yang, Subscription freedom: automatic industrial data subscription based on recommendation system. (2022), pp. 3614–3619, https://doi.org/10.1109/CAC57257.2022. 10055861 [Google Scholar]
  27. M. Bakken, An iso/iec 81346-inspired domain specific language to extract time series data for analytics (2022), pp. 202–209, https://doi.org/10.1109/SII52469.2022.9708860 [Google Scholar]
  28. N. Tufek, Semantic information extraction from multi-modal technical document (2023), https://doi.org/10.23919/CISTI58278.2023.10211635 [Google Scholar]
  29. N. Tufek, A. Sai Sree Thuluva, V. Philipp Just, M. Sabou, Towards extraction of validation rules from opc ua companion specifications, in Int. Conf. on Emerging Technologies and Factory Automation (2023), pp. 1–8, https://doi.org/10.1109/ETFA54631.2023.10275371 [Google Scholar]
  30. Y.S. Bareedu, T. Frühwirth, C. Niedermeier, M. Sabou, G. Steindl, A. Saisree Thuluva, S. Tsaneva, N. Tufek Ozkaya, Deriving semantic validation rules from industrial standards: an opc ua study, Semantic Web 15 (2024) 517–554, https://doi.org/10.3233/SW-233342 [Google Scholar]
  31. M. Hornsteiner, P. Empl, T. Bunghardt, S. Schönig, Reading between the lines: process mining on opc ua network data, Sensors 24 1–15 (2024), https://doi.org/10.3390/s24144497 [Google Scholar]
  32. S.-H. Liao, P.-H. Chu, P.-Y. Hsiao, Data mining techniques and applications-a decade review from 2000 to 2011, Exp. Syst. Appl. 39 (2012) 11303–11311, https://doi.org/10.23919/IConAC.2017.8082090 [Google Scholar]
  33. E.W.T. Ngai, L. Xiu, D.C.K. Chau, Application of data mining techniques in customer relationship management: a literature review and classification, Expert Syst. Appl. 36 (2009) 2592–2602, https://doi.org/10.1016/j.eswa.2008. 02.021 [Google Scholar]
  34. N. Jain, V. Srivastava, Data mining techniques: a survey paper, Int. J. Res. Eng. Technol. 2 (2013) 2319–1163 [Google Scholar]
  35. P.M. Lavanya, E. Sasikala, Deep learning techniques on text classification using natural language processing (nlp) in social healthcare network: a comprehensive survey, in Int. Conf. on Signal Processing and Communication (ICPSC) (2021), pp. 603–609, https://doi.org/10.1109/ICSPC51351.2021. 9451752 [Google Scholar]
  36. J. Sawicki, M. Ganzha, M. Paprzycki, The state of the art of natural language processing—a systematic automated review of nlp literature using nlp techniques, Data Intelligence 5 (2023) 707–749, https://doi.org/10.1162/dint_a_00213 [Google Scholar]
  37. L. Bilge, S. Sen, D. Balzarotti, E. Kirda, C. Kruegel, Exposure: a passive DNS analysis service to detect and report malicious domains, ACM Trans. Inf. Syst. Secur. 16 (2014) 1–28, https://doi.org/10.1145/2584679 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.