Open Access
Issue |
Manufacturing Rev.
Volume 12, 2025
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/mfreview/2025005 | |
Published online | 31 March 2025 |
- S. Fooladpanjeh, A. Dadrasi, A.A. Gharahbagh, V. Parvaneh, Fuzzy neural network and coupled gene expression programming/multivariate non-linear regression approach on mechanical features of hydroxyapatite/graphene oxide/epoxy: empirical and optimization study, J. Mech. Eng. Sci. 235 (2021) 7169–7179 [Google Scholar]
- I. Najjar, A.M. Sadoun, A. Ibrahim, H. Ahmadian, A. Fathy, A modified artificial neural network to predict the tribological properties of Al-SiC nanocomposites fabricated by accumulative roll bonding process, J. Compos. Mater. 57 (2023) 3433–3445 [CrossRef] [Google Scholar]
- N.X. Ho, T.T. Le, M.V. Le, Development of artificial intelligence based model for the prediction of Young's modulus of polymer/carbon-nanotubes composites, Mech. Adv. Mater. Struct. 29 (2022) 5965–5978 [Google Scholar]
- P.K. Kharwar, R.K. Verma, A. Singh, Neural network modeling and combined compromise solution (CoCoSo) method for optimization of drilling performances in polymer nanocomposites, J. Thermoplastic Compos. Mater. 35 (2022) 1604–1631 [Google Scholar]
- M. Wang, W. Wang, S. Feng, L. Li, Adaptive multi-class segmentation model of aggregate image based on improved sparrow search algorithm, KSII Trans. Internet Inf. Syst. 17 (2023) 391–411 [Google Scholar]
- Y. Yue, L. Cao, D. Lu, Z. Hu, M. Xu, S. Wang, H. Ding, Review and empirical analysis of sparrow search algorithm, Artif. Intell. Rev. 56 (2023) 10867–10919 [Google Scholar]
- X. Zhou, J. Wang, H. Zhang, Q. Duan, Application of a hybrid improved sparrow search algorithm for the prediction and control of dissolved oxygen in the aquaculture industry, Appl. Intell. 53 (2023) 8482–8502 [Google Scholar]
- P. Kathiroli, K. Selvadurai, Energy efficient cluster head selection using improved Sparrow Search Algorithm in wireless sensor networks, J. King Saud Univ. Comput. Inf. Sci. 34 (2022) 8564–8575 [Google Scholar]
- J. Geng, X. Sun, H. Wang, X. Bu, D. Liu, F. Li, Z. Zhao, A modified adaptive sparrow search algorithm based on chaotic reverse learning and spiral search for global optimization, Neural Comput. Appl. 35 (2023) 24603–24620 [Google Scholar]
- S.M. Razavi, A. Sadollah, A.K. Al-Shamiri, Prediction and optimization of electrical conductivity for polymer-based composites using design of experiment and artificial neural networks, Neural Comput. Appl. 34 (2022) 7653–7671 [Google Scholar]
- S. Gao, X. Liu, X. Liu, D. Chen, H. Guo, J. Yin, Predicting the AC conductivity of nanocomposite films using the bagging model, Polym. Sci. Ser. A 64 (2022) 662–672 [Google Scholar]
- N. Vidakis, M. Petousis, N. Mountakis, E. Maravelakis, S. Zaoutsos, J. Kechagias, Mechanical response assessment of antibacterial PA12/TiO2 3D printed parts: parameters optimization through artificial neural networks modeling, Int. J. Adv. Manufactur. Technol. 121 (2022) 785–803 [Google Scholar]
- A. Shabani, G. Nabiyouni, D. Ghanbari, Preparation and photocatalytic study of CoFe2O4/TiO2/Au nanocomposites and their applications in organic pollutant degradation and modeling by an artificial neural network (ANN), J. Mater. Sci.: Mater. Electr. 33 (2022) 9885–9904 [Google Scholar]
- Y. Elmoghazy, E.M.O. Abuelgasim, S.A. Osman, Y.R. Afaneh, O.M. Eissa, B. Safaei, Effective mechanical properties evaluation of unidirectional and bidirectional composites using virtual domain approach at microscale, Arch. Adv. Eng. Sci. 1 (2023) 27–37 [Google Scholar]
- Z. Zhang, Z. Jiao, R. Shen, P. Song, Q. Wang, Accelerated design of flame retardant polymeric nanocomposites via machine learning prediction, ACS Appl. Eng. Mater. 1 (2022) 596–605 [Google Scholar]
- A.G. Gad, K.M. Sallam, R.K. Chakrabortty, M.J. Ryan, A.A.Abohany, An improved binary sparrow search algorithm for feature selection in data classification, Neural Comput. Appl. 34 (2022) 15705–15752 [Google Scholar]
- I. Najjar, A. Sadoun, A. Fathy, On the understanding and prediction of tribological properties of Al-TiO2 nanocomposites using artificial neural network, J. Compos. Mater. 57 (2023) 2325–2337 [CrossRef] [Google Scholar]
- L. Sun, S. Si, W. Ding, J. Xu, Y. Zhang, BSSFS: binary sparrow search algorithm for feature selection, Int. J. Mach. Learn. Cybern. 14 (2023) 2633–2657 [Google Scholar]
- X. Yuan, J.S. Pan, A.Q. Tian, S.C. Chu, Binary sparrow search algorithm for feature selection, J. Internet Technol. 24 (2023) 217–232 [Google Scholar]
- A. Naik, S.C. Satapathy, A comparative study of social group optimization with a few recent optimization algorithms, Complex Intell. Syst. 7 (2021) 249–295 [Google Scholar]
- Y. Zhu, N. Yousefi, Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm, Int. J. Hydrogen Energy 46 (2021) 9541–9552 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.