Issue
Manufacturing Rev.
Volume 12, 2025
Special Issue - 21st International Conference on Manufacturing Research - ICMR2024
Article Number 1
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2024024
Published online 03 January 2025
  1. R. Khazaka, L. Mendizabal, D. Henry, R. Hanna, Survey of high-temperature reliability of power electronics packaging components, IEEE Trans. Power Electron. 30 (2015) 2456–2464 [CrossRef] [Google Scholar]
  2. K.S. Siow, Mechanical properties of nano-silver joints as die attach materials, J. Alloys Compd. 514 (2012) 6–19 [CrossRef] [Google Scholar]
  3. C. Liu, A. Liu, Y. Su, Y. Chen, Z. Zhou, C. Liu, Ultrasonically enhanced flux-less bonding with Zn-5Al alloy under ambient condition for high-temperature electronics interconnects, J. Manuf. Process. 73 (2022) 139–148 [CrossRef] [Google Scholar]
  4. Y. Gao, J. Jiu, C. Chen, K. Suganuma, R. Sun, Z.Q. Liu, Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test, J. Mater. Sci. Technol. 115 (2022) 251–255 [CrossRef] [Google Scholar]
  5. Z. Xu, D. Jiang, M. Li, P. Ning, F.F. Wang, Z. Liang, Development of Si IGBT phase-leg modules for operation at 200 °C in hybrid electric vehicle applications, IEEE Trans. Power Electron. 28 (2013) 5557–5567 [CrossRef] [Google Scholar]
  6. A.B. Jorgensen, S. Munk-Nielsen, C. Uhrenfeldt, Overview of digital design and finite-element analysis in modern power electronic packaging, IEEE Trans. Power Electron. 35 (2020) 10892–10905 [CrossRef] [Google Scholar]
  7. H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices, Metall. Mater. Trans. B 41 (2010) 824–832 [Google Scholar]
  8. H. Lee, V. Smet, R. Tummala, L. Fellow, A review of SiC power module packaging technologies: challenges, advances, and emerging issues, IEEE J. Emerg. Sel. Top. Power Electron. 8 (2020) 239–255 [CrossRef] [Google Scholar]
  9. Y. Li, C.P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications, Mater. Sci. Eng. R Reports 51 (2006) 1–35 [CrossRef] [Google Scholar]
  10. S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications, Microelectron. Reliab. 70 (2017) 1–11 [CrossRef] [Google Scholar]
  11. C. Tsai, W. Huang, C.R. Kao, L.M. Chew, W. Schmitt, Die attachment applications of power ICs, In 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (2020) 1430–1435, doi: 10.1109/ECTC32862.2020.00226. [Google Scholar]
  12. H. Zhang, J. Minter, N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials, J. Electron. Mater. 48 (2019) 201–210 [Google Scholar]
  13. S. Zhang, Q. Wang, T. Lin, P. Zhang, P. He, K.W. Paik, Cu-Cu joining using citrate coated ultra-small nano-silver pastes, J. Manuf. Process. 62 (2021) 546–554 [CrossRef] [Google Scholar]
  14. H. Yongle, L. Yifei, X. Fei, L. Binli, T. Xin, Physics of failure of die-attach joints in IGBTs under accelerated aging: evolution of micro-defects in lead-free solder alloys, Microelectron. Reliab. 109 (2020) 113637 [CrossRef] [Google Scholar]
  15. L. Yan et al., Study of thermal stress fluctuations at the die-attach solder interface using the finite element method, Electron. 11 (2022), doi: 10.3390/electronics11010062 [Google Scholar]
  16. K. Sugiura et al., First failure point of a SiC power module with sintered Ag die-attach on reliability tests, no. 2 mm, 2-5 In 2017 International Conference on Electronics Packaging (ICEP) (2017) 97–100 [Google Scholar]
  17. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles, J. Mater. Process. Technol. 215 (2015) 299–308 [CrossRef] [Google Scholar]
  18. N. Wu, Y. Hu, S. Sun, Microstructure characterization and interfacial reactions between Au-Sn solder and different back metallization systems of GaAs MMICs, Materials (Basel) 13 (2020) 1–12 [Google Scholar]
  19. A. Hassan, Y. Savaria, M. Sawan, Electronics and packaging intended for emerging harsh environment applications: a review, IEEE Trans. Very Large Scale Integr. Syst. 26 (2018) 2085–2098 [CrossRef] [Google Scholar]
  20. M. Wang, Y. Mei, S. Member, W. Hu, X. Li, G. Lu, Pressureless sintered-silver as die attachment for bonding Si and SiC chips on silver, gold, copper, and nickel metallization for power electronics packaging: the practice and science, IEEE J. Emerg. Sel. Top. Power Electron. 10 (2022) 2645–2655, doi: 10.1109/JESTPE.2022.3150223 [Google Scholar]
  21. F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, M.C. Hamilton, Reliability of Ag sintering for power semiconductor die attach in high-temperature applications, IEEE Trans. Power Electron. 32 (2017) 7083–7095 [CrossRef] [Google Scholar]
  22. K.-Y. Chiu, P.-I. Lee, Solid-liquid interdiffusion bonding between Ti/Ni/Ag/Sn backside metallized si chips and Cu/Al2O3-DBC substrates with Au/Pd/Ni surface finish, Int. J. Mining, Mater. Metall. Eng. 8 (2022) 1–7 [Google Scholar]
  23. F.J. Yeh, T.C. Chiu, K.L. Lin, The interfacial interaction of Ti/Ni/Ag/Au multilayer under thermal cycling test, 14th Int. Conf. Electron. Mater. Packag. EMAP 2012, 1 (2012), doi: 10.1109/EMAP.2012.6507860 [Google Scholar]
  24. M. Wang, Y. Mei, W. Hu, X. Li, G.Q. Lu, Pressureless Sintered-silver as die attachment for bonding Si and SiC chips on Silver, Gold, Copper, and Nickel Metallization for Power Electronics Packaging: The Practice and Science, IEEE J. Emerg. Sel. Top. Power Electron. 6777 (2022) 2645–2655 [CrossRef] [Google Scholar]
  25. Y. Zhang et al., Coexistent improvement of thermal and mechanical performance at Si/Cu joint by thickness-controlled Sn-Ag bond layer, J. Manuf. Process. 101 (2023) 104–113 [CrossRef] [Google Scholar]
  26. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn-Ag-Cu based solders and substrates, J. Mater. Sci. Mater. Electron. 21 (2010) 421–440 [CrossRef] [Google Scholar]
  27. H. Huang, X. Guo, F. Bu, G. Huang, Corrosion behavior of immersion silver printed circuit board copper under a thin electrolyte layer, Eng. Fail. Anal. 117 (2020) 104807 [CrossRef] [Google Scholar]
  28. Q.V. Bui et al., Corrosion protection of ENIG surface finishing using electrochemical methods, Mater. Res. Bull. 45 (2010) 305–308 [CrossRef] [Google Scholar]
  29. S.F. Muhd Amli, M.A.A. Mohd Salleh, R. Mohd Said, N.R. Abdul Razak, J.A. Wahab, M.I.I. Ramli, Effect of surface finish on the wettability and electrical resistivity of Sn-3. 0Ag-0.5Cu solder, IOP Conf. Ser. Mater. Sci. Eng. 701 (2019) 1–7 [Google Scholar]
  30. S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Novel interface material used in high power electronic die-attaching on bare Cu substrates, J. Mater. Sci. Mater. Electron. 27 (2016) 10941–10950 [CrossRef] [Google Scholar]
  31. D. Goyal, T. Lane, P. Kinzie, C. Panichas, K.M. Chong, O. Villalobos, Failure mechanism of brittle solder joint fracture in the presence of Electroless Nickel Immersion gold (ENIG) interface, Proc. − Electron. Components Technol. Conf. (2002) 732–739 [CrossRef] [Google Scholar]
  32. F. Lang, H. Yamaguchi, H. Ohashi, H. Sato, Improvement in joint reliability of SiC power devices by a diffusion barrier between Au-Ge solder and Cu/Ni(P)-metalized ceramic substrates, J. Electron. Mater. 40 (2011) 1563–1571 [CrossRef] [Google Scholar]
  33. K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Mater. Sci. Eng. R Reports 38 (2002) 55–105 [CrossRef] [Google Scholar]
  34. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng. R Reports 49 (2005) 1–60 [CrossRef] [Google Scholar]
  35. P. Yi, K. Xiao, C. Dong, S. Zou, X. Li, Effects of mould on electrochemical migration behaviour of immersion silver finished printed circuit board, Bioelectrochemistry 119 (2018) 203–210 [CrossRef] [Google Scholar]
  36. Q. Xu, Y. Mei, X. Li, G.Q. Lu, Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates, J. Alloys Compd. 675 (2016) 317–324 [CrossRef] [Google Scholar]
  37. E. Long and L. Toscano, Electroless nickel/immersion silver − A new surface finish PCB applications, Met. Finish. 111 (2013) 12–19 [CrossRef] [Google Scholar]
  38. J. Wojewoda-Budka, Z. Huber, L. Litynska-Dobrzynska, N. Sobczak, P. Zieba, Microstructure and chemistry of the SAC/ENIG interconnections, Mater. Chem. Phys. 139 (2013) 276–280 [CrossRef] [Google Scholar]
  39. G. Ghosh, Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints, Acta Mater. 49 (2001) 2609–2624 [CrossRef] [Google Scholar]
  40. M.A. Fazal, N.K. Liyana, S. Rubaiee, A. Anas, A critical review on performance, microstructure and corrosion resistance of Pb-free solders, Meas. J. Int. Meas. Confed. 134 (2019) 897–907 [CrossRef] [Google Scholar]
  41. K.S. Tan, N.M. Noordin, K.Y. Cheong, An overview of die-attach material for high temperature applications, AIP Conf. Proc., 1865 (2017) 050011 [Google Scholar]
  42. N. Ismail et al., A systematic literature review: The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints, J. Manuf. Process. 83 (2022) 68–85 [CrossRef] [Google Scholar]
  43. X. Yi, R. Zhang, X. Hu, Study on the microstructure and mechanical property of Cu-foam modified Sn3. 0Ag0.5Cu solder joints by ultrasonic-assisted soldering, J. Manuf. Process. 64 (2021) 508–517 [CrossRef] [Google Scholar]
  44. L. Sun, L. Zhang, Y. Zhang, M. he Chen, C. ping Chen, Interfacial reaction, shear behavior and microhardness of Cu-Sn TLP bonding joints bearing CuZnAl powder for 3D packaging, J. Manuf. Process. 68 (2021) 1672–1682 [Google Scholar]
  45. A. Larsson, T.A. Tollefsen, O.M. Løvvik, K.E. Aasmundtveit, A Review of Eutectic Au-Ge Solder Joints, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50 (2019) 4632–4641 [CrossRef] [Google Scholar]
  46. J.E. Spinelli, B.L. Silva, A. Garcia, Microstructure, phases morphologies and hardness of a Bi-Ag eutectic alloy for high temperature soldering applications, Mater. Des. 58 (2014) 482–490 [CrossRef] [Google Scholar]
  47. T. Gancarz, J. Pstrus, G. Cempura, K. Berent, Influence of Li Addition to Zn-Al Alloys on Cu Substrate During Spreading Test and After Aging Treatment, J. Electron. Mater. 45 (2016) 6067–6078 [CrossRef] [Google Scholar]
  48. Y. Su et al., Thermo-elasto-plastic phase-field modelling of mechanical behaviours of sintered nano-silver with randomly distributed micro-pores, Comput. Methods Appl. Mech. Eng. 378 (2021) 113729 [CrossRef] [Google Scholar]
  49. J. Watson and G. Castro, A review of high-temperature electronics technology and applications, J. Mater. Sci. Mater. Electron. 26 (2015) 9226–9235 [CrossRef] [Google Scholar]
  50. K. Suganuma, S.J. Kim, K.S. Kim, High-temperature lead-free solders: Properties and possibilities, JOM 61 (2009) 64–71 [CrossRef] [Google Scholar]
  51. H. Zhang, J. Minter, N.-C. Lee, A Brief Review on High-Temperature, Pb-Free Die-Attach Materials, J. Electron. Mater. 48 (2018) 201–210 [Google Scholar]
  52. B. Wu, X. Leng, Z. Xiu, J. Yan, Microstructural evolution of SiC joints soldered using Zn-Al filler metals with the assistance of ultrasound, Ultrason. Sonochem. 44 (2018) 280–287 [CrossRef] [Google Scholar]
  53. Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, K. Ishida, Interfacial reaction between Cu substrates and Zn-Al base high-temperature Pb-free solders, J. Electron. Mater. 37 (2008) 314–323 [CrossRef] [Google Scholar]
  54. T. Shimizu, H. Ishikawa, I. Ohnuma, K. Ishida, Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use, J. Electron. Mater. 28 (1999) 1172–1175 [CrossRef] [Google Scholar]
  55. C. Liu, A. Liu, Y. Su, Z. Zhou, C. Liu, Nano Ag sintering on Cu substrate assisted by self-assembled monolayers for high-temperature electronics packaging, Microelectron. Reliab. 126 (2021) 114241 [CrossRef] [Google Scholar]
  56. M.H. Yu, S.J. Joo, H.S. Kim, Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes, Nanotechnology 28 (2017) 205205 [CrossRef] [Google Scholar]
  57. G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: Review, Microelectron. Reliab. 52 (2012) 1306–1322 [CrossRef] [Google Scholar]
  58. K.S. Siow, Y.T. Lin, Identifying the Development State of Sintered Silver (Ag) as a Bonding Material in the Microelectronic Packaging Via a Patent Landscape Study, J. Electron. Packag. Trans. ASME, 138 (2016) 020804 [CrossRef] [Google Scholar]
  59. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: A review, IEEE Trans. Components, Packag. Manuf. Technol. 1 (2011) 457–478 [CrossRef] [Google Scholar]
  60. S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85 %) solder in the electronics industry: RoHS exemptions and alternatives, J. Mater. Sci. Mater. Electron. 26 (2015) 4021–4030 [CrossRef] [Google Scholar]
  61. D.J. Jeanmonod, Rebecca K. K., et al., Suzuki, M. Hrabovsky, M. P. Mariana Furio Franco Bernardes, Lilian Cristina Pereira and Daniel Junqueira Dorta, high-performance packaging technology for wide bandgap semiconductor modules, Intech Open 2 (2018) 64 [Google Scholar]
  62. M.H. Tsai, Y.W. Lin, H.Y. Chuang, C.R. Kao, Effect of Sn concentration on massive spalling in high-Pb soldering reaction with Cu substrate, J. Mater. Res. 24 (2009) 3407–3411 [CrossRef] [Google Scholar]
  63. C.C. Chang, H.Y. Chung, Y.S. Lai, C.R. Kao, Interaction between Ni and Cu across 95Pb-5Sn high-lead layer, J. Electron. Mater. 39 (2010) 2662–2668 [CrossRef] [Google Scholar]
  64. J.M. Song, H.Y. Chuang, Z.M. Wu, Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates, J. Electron. Mater. 35 (2006) 1041–1049 [CrossRef] [Google Scholar]
  65. C.P. Lin, C.M. Chen, Y.W. Yen, H.J. Wu, S.W. Chen, Interfacial reactions between high-Pb solders and Ag, J. Alloys Compd. 509 (2011) 3509–3514 [CrossRef] [Google Scholar]
  66. V. Chidambaram, J. Hald, J. Hattel, Development of Au-Ge based candidate alloys as an alternative to high-lead content solders, J. Alloys Compd. 490 (2010) 170–179 [CrossRef] [Google Scholar]
  67. J.W. Yoon, H.S. Chun, S.B. Jung, Liquid-state and solid-state interfacial reactions of fluxless-bonded Au-20Sn/ENIG solder joint, J. Alloys Compd. 469 (2009) 108–115 [CrossRef] [Google Scholar]
  68. M.A. Alim, M.Z. Abdullah, M.S.A. Aziz, R. Kamarudin, Die attachment, wire bonding, and encapsulation process in LED packaging: A review, Sensors Actuators, A Phys. 329 (2021) 112817 [CrossRef] [Google Scholar]
  69. X. Wang, L. Zhang, M. Li, Structure and Properties of Au-Sn Lead-Free Solders in Electronic Packaging, Mater. Trans. 63 (2022) 93–104 [CrossRef] [Google Scholar]
  70. J. Xu, M. Wu, J. Pu, S. Xue, Novel Au-based solder alloys: A potential answer for electrical packaging problem, Adv. Mater. Sci. Eng. 2020 (2020) doi: 10.1155/2020/4969647 [Google Scholar]
  71. C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin, R. Novakovic, Wetting and soldering behavior of eutectic Au-Ge alloy on Cu and Ni substrates, J. Electron. Mater. 40 (2011) 1533–1541 [CrossRef] [Google Scholar]
  72. B. Ressel, K.C. Prince, S. Heun, Y. Homma, Wetting of Si surfaces by Au-Si liquid alloys, J. Appl. Phys. 93 (2003) 3886–3892 [CrossRef] [Google Scholar]
  73. V. Chidambaram, H.B. Yeung, G. Shan, Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics, J. Electron. Mater. 41 (2012) 2107–2117 [CrossRef] [Google Scholar]
  74. J.W. Yoon, B.I. Noh, S.B. Jung, Interfacial reaction between Au-Sn solder and Au/Ni-metallized Kovar, J. Mater. Sci. Mater. Electron. 22 (2011) 84–90 [CrossRef] [Google Scholar]
  75. H.M. Chung, C.M. Chen, C.P. Lin, C.J. Chen, Microstructural evolution of the Au-20 wt.% Sn solder on the Cu substrate during reflow, J. Alloys Compd. 485 (2009) 219–224 [CrossRef] [Google Scholar]
  76. H. Zhang, N.C. Lee, High reliability high melting mixed lead-free BiAgX solder paste system, Proc. IEEE/CPMT Int. Electron. Manuf. Technol. Symp. (2012) 119–126 [Google Scholar]
  77. J.M. Song, H.Y. Chuang, T.X. Wen, Thermal and tensile properties of Bi-Ag alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38 (2007) 1371–1375 [CrossRef] [Google Scholar]
  78. Z. Shen, K. Fang, R. Wayne Johnson, M.C. Hamilton, Characterization of Bi-Ag-X solder for high temperature sic die attach, IEEE Trans. Components, Packag. Manuf. Technol. 4 (2014) 1778–1784 [CrossRef] [Google Scholar]
  79. M. Nahavandi, M.A.A. Hanim, Z.N. Ismarrubie, A. Hajalilou, R. Rohaizuan, M.Z.S. Fadzli, Effects of silver and antimony content in lead-free high-temperature solders of Bi-Ag and Bi-Sb on copper substrate, J. Electron. Mater. 43 (2014) 579–585 [CrossRef] [Google Scholar]
  80. H.Y. Chuang, Z.M. Wu, Substrate dissolution and shear properties of the joints between Bi-Ag Alloys and Cu substrates for high-temperature soldering applications, J. Electron. Mater. 36 (2007) 1516–1523 [CrossRef] [Google Scholar]
  81. H. Li, Y. Li, C. Chen, Microstructure and formation mechanism of Al2O3/Zn5Al/2024Al joint by ultrasonic assisted soldering process, J. Manuf. Process. 83 (2022) 313–324 [CrossRef] [Google Scholar]
  82. A. Haque, B.H. Lim, A.S.M.A. Haseeb, H.H. Masjuki, Die attach properties of Zn-Al-Mg-Ga based high-temperature lead-free solder on Cu lead-frame, J. Mater. Sci. Mater. Electron. 23 (2012) 115–123 [CrossRef] [Google Scholar]
  83. M. Mehedi, H. Ahmed, S.M. Abdul, Characteristics of eutectic and near − eutectic Zn − Al alloys as high − temperature lead − free solders, J. Mater. Sci. Mater. Electron. 31 (2020) 1691–1702 [CrossRef] [Google Scholar]
  84. M. Rettenmayr, P. Lambracht, B. Kempf, C. Tschudin, Zn-Al based alloys as Pb-free solders for die attach, J. Electron. Mater. 31 (2002) 278–285 [CrossRef] [Google Scholar]
  85. S.-S. Kim, K.-S. Kim, S.-J. Kim, C.-Y. Kang, K. Suganuma, Characteristics of Zn-Al-Cu Alloys for high temperature solder application, Mater. Trans. 49 (2008) 1531–1536 [CrossRef] [Google Scholar]
  86. L. Liu, L. Zhou, C. Liu, Electroless Ni-W-P alloy as a barrier layer between Zn-based high temperature solders and Cu substrates, Proc. − Electron. Components Technol. Conf. (2014) 1348–1353 [Google Scholar]
  87. A. Haque, Y.S. Won, B.H. Lim, A.S.M.A. Haseeb, H.H. Masjuki, Effect of Ni metallization on interfacial reactions and die attach properties of Zn-Al-Mg-Ga high temperature lead-free solder, Proc. IEEE/CPMT Int. Electron. Manuf. Technol. Symp. (2010) [Google Scholar]
  88. Y. Takaku et al., Interfacial reaction between Zn-Al-based high-temperature solders and Ni substrate, J. Electron. Mater. 38 (2009) 54–60 [CrossRef] [Google Scholar]
  89. T. Gancarz, J. Pstrusś, P. Fima, S. Mosinłska, Effect of Ag addition to Zn-12Al alloy on kinetics of growth of intermediate phases on Cu substrate, J. Alloys Compd. 582 (2014) 313–322 [CrossRef] [Google Scholar]
  90. C. Chen et al., Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices, Acta Mater. 129 (2017) 41–51 [CrossRef] [Google Scholar]
  91. Y. Yuan, H. Wu, J. Li, P. Zhu, R. Sun, Applied Surface Science Cu-Cu joint formation by low-temperature sintering of self-reducible Cu nanoparticle paste under ambient condition, Appl. Surf. Sci. 570 (2021) 151220 [CrossRef] [Google Scholar]
  92. C. Chen et al., Low temperature low pressure solid-state porous Ag bonding for large area and its high-reliability design in die-attached power modules, Ceram. Int. 45 (2019) 9573–9579 [CrossRef] [Google Scholar]
  93. D. Ishikawa et al., Bonding strength of Cu sinter die-bonding paste on Ni, Cu, Ag, and Au Surfaces under pressureless bonding process, Trans. Japan Inst. Electron. Packag. 13 (2020) E19-017-1-E19-017–11 [Google Scholar]
  94. C. Liu, A. Liu, Y. Zhong, S. Robertson, Z. Zhou, C. Liu, Ultrasonic-assisted nano Ag-Al alloy sintering to enable high-temperature electronic interconnections, Proc. − Electron. Components Technol. Conf., 2020-June (2020) 1999–2004 [Google Scholar]
  95. J. Yan, A review of sintering-bonding technology using ag nanoparticles for electronic packaging, Nanomaterials 11 (2021) 927 [CrossRef] [Google Scholar]
  96. M.Y. Wang, Y.H. Mei, R. Burgos, D. Boroyevich, G.Q. Lu, Effect of substrate surface finish on bonding strength of pressure-less sintered silver die-Attach, 2018 Int. Conf. Electron. Packag. iMAPS All Asia Conf. ICEP-IAAC 2018 (2018) 50–54 [Google Scholar]
  97. C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates, J. Mater. Sci. Mater. Electron. 29 (2018) 1785–1797 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.