Open Access
Review
Issue
Manufacturing Rev.
Volume 12, 2025
Article Number 15
Number of page(s) 29
DOI https://doi.org/10.1051/mfreview/2025011
Published online 20 June 2025
  1. A. Anu Kuttan, R. Rajesh, M. Dev Anand, Abrasive water jet machining techniques and parameters: a state of the art, open issue challenges and research directions, J. Brazilian Soc. Mech. Sci. Eng. 43 (2021) 1–14 [CrossRef] [Google Scholar]
  2. Y. Natarajan, P.K. Murugesan, M. Mohan, S.A. Liyakath Ali Khan, Abrasive Water Jet Machining process: A state of art of review, J. Manuf. Process. 49 (2020) 271–322 [CrossRef] [Google Scholar]
  3. A.N. Raipur, A review paper on current research and development in abrasive waterjet machining, Int. J. Innov. Sci. Res. Technol. 71 (2022) 4160–4169 [Google Scholar]
  4. H. Singh, N.K. Bhoi, P.K. Jain, Developments in abrasive water jet machining process − from 1980 to 2020, in: Adv. Mach. Finish., Elsevier, 2021, pp. 217–252 [CrossRef] [Google Scholar]
  5. M. Schüler, D. Heidrich, T. Herrig, X.F. Fang, T. Bergs, Automotive hybrid design production and effective end machining by novel abrasive waterjet technique, Procedia CIRP 101 (2021) 374–377 [CrossRef] [Google Scholar]
  6. V.K. Pal, S.K. Choudhury, Fabrication and analysis of micro-pillars by abrasive water jet machining, Procedia Mater. Sci. 6 (2014) 61–71 [CrossRef] [Google Scholar]
  7. H. Li, Z. Huang, J. Li, K. Cheng, J. Hu, W. Li, Effect of nozzle structure on rock drilling performances of abrasive waterjet, in: ARMA US Rock Mech. Symp., ARMA, 2023, p. ARMA–2023 [Google Scholar]
  8. J. Valentinčič, A. Lebar, I. Sabotin, P. Drešar, M. Jerman, Development of ice abrasive waterjet cutting technology, J. Achiev. Mater. Manuf. Eng. 81 (2017) 76–84 [Google Scholar]
  9. M.K. Singh, R. Trehan, A. Gupta, Application of Grey approach to enhance the surface properties during AWJ machining of marine grade Inconel, Adv. Mater. Process. Technol. 7 (2021) 429–445 [Google Scholar]
  10. G. Li, S. Ding, Machining of medical device components, in: Met. Biomater. Process. Med. Device Manuf., Elsevier, 2020, pp. 137–157. [Google Scholar]
  11. M.C. Kong, D. Axinte, W. Voice, Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling, J. Mater. Process. Technol. 211 (2011) 959–971 [CrossRef] [Google Scholar]
  12. S. Akıncıoğlu, Investigation of effect of abrasive water jet (AWJ) machining parameters on aramid fiber-reinforced polymer (AFRP) composite materials, Aircr. Eng. Aerosp. Technol. 93 (2021) 615–628 [CrossRef] [Google Scholar]
  13. N. Yuvaraj, E. Pavithra, C.S. Shamli, Investigation of surface morphology and topography features on abrasive water jet milled surface pattern of SS 304, J. Test. Eval. 48 (2020) 2981–2997 [CrossRef] [Google Scholar]
  14. Y. Yuan, J. Chen, H. Gao, X. Wang, An investigation into the abrasive waterjet milling circular pocket on titanium alloy, Int. J. Adv. Manuf. Technol. 107 (2020) 4503–4515 [CrossRef] [Google Scholar]
  15. V.K. Pal, A.K. Sharma, Complex shaped micro-channels generation using tools fabricated by AWJ milling process, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 236 (2022) 194–201 [CrossRef] [Google Scholar]
  16. M. Altin Karataş, A.R. Motorcu, H. Gökkaya, Study on delamination factor and surface roughness in abrasive water jet drilling of carbon fiber-reinforced polymer composites with different fiber orientation angles, J. Brazilian Soc. Mech. Sci. Eng. 43 (2021) 1–29 [CrossRef] [Google Scholar]
  17. S. Mahalingam, B. Kuppusamy, Y. Natarajan, Multi-objective soft computing approaches to evaluate the performance of abrasive water jet drilling parameters on die steel, Arab. J. Sci. Eng. 46 (2021) 7893–7907 [CrossRef] [Google Scholar]
  18. Y. Zhang, D. Liu, W. Zhang, H. Zhu, C. Huang, Damage study of fiber-reinforced composites drilled by abrasive waterjet—challenges and opportunities, Int. J. Adv. Manuf. Technol. (2021) 1–15 [Google Scholar]
  19. D. Liu, C. Huang, J. Wang, H. Zhu, Material removal mechanisms of ceramics turned by abrasive waterjet (AWJ) using a novel approach, Ceram. Int. 47 (2021) 15165–15172 [CrossRef] [Google Scholar]
  20. A.K. Srivastava, A. Nag, A.R. Dixit, J. Scucka, S. Hloch, D. Klichová, P. Hlaváček, S. Tiwari, Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED, Measurement 131 (2019) 628–639 [CrossRef] [Google Scholar]
  21. F. Kartal, A. Kaptan, Influence of abrasive water jet turning operating parameters on surface roughness of ABS and PLA 3D printed parts, Int. J. 3D Print. Technol. Digit. Ind. 7 (2022) 184–190 [Google Scholar]
  22. L. Wan, J. Xiong, J. Cai, S. Wu, Y. Kang, D. Li, Feasible study on the sustainable and clean application of steel slag for abrasive waterjet machining, J. Clean. Prod. 420 (2023) 138378 [CrossRef] [Google Scholar]
  23. L. Huang, P. Kinnell, P.H. Shipway, Parametric effects on grit embedment and surface morphology in an innovative hybrid waterjet cleaning process for alpha case removal from titanium alloys, Procedia CIRP 6 (2013) 594–599 [CrossRef] [Google Scholar]
  24. A. Skoczylas, Vibratory shot peening of elements cut with abrasive water jet, Adv. Sci. Technol. Res. J. 16 (2022) [Google Scholar]
  25. V. Chakkravarthy, J.P. Oliveira, A. Mahomed, N. Yu, P. Manojkumar, M. Lakshmanan, L. Zhang, V. Raja, S. Jerome, T.R. Prabhu, Effect of abrasive water jet peening on NaCl-induced hot corrosion behaviour of Ti-6Al-4V, Vacuum 210 (2023) 111872 [CrossRef] [Google Scholar]
  26. Z. Lv, R. Hou, R. Wang, Y. Zhang, M. Zhang, Investigation on surface integrity and fatigue performance in abrasive waterjet peening, J. Brazilian Soc. Mech. Sci. Eng. 44 (2022) 520 [CrossRef] [Google Scholar]
  27. X. Yang, X. Lin, M. Li, X. Jiang, Experimental study on surface integrity and kerf characteristics during abrasive waterjet and hybrid machining of CFRP laminates, Int. J. Precis. Eng. Manuf. 21 (2020) 2209–2221 [CrossRef] [Google Scholar]
  28. M. ShivajiRao, S. Satyanarayana, Abrasive water jet drilling of float glass and characterisation of hole profile, Glas. Struct. Eng. 5 (2020) 155–169 [CrossRef] [Google Scholar]
  29. R. Shanmugam, M. Thangaraj, M. Ramoni, Enhancing the performance measures of abrasive water jet machining on drilling acrylic glass material, in: ASME Int. Mech. Eng. Congr. Expo., American Society of Mechanical Engineers, 2022, p. V02AT02A044 [Google Scholar]
  30. Y. Yuan, J. Chen, H. Gao, Surface profile evolution model for titanium alloy machined using abrasive waterjet, Int. J. Mech. Sci. 240 (2023) 107911 [CrossRef] [Google Scholar]
  31. X. Sourd, R. Zitoune, A. Hejjaji, M. Salem, A. Hor, D. Lamouche, Plain water jet cleaning of titanium alloy after abrasive water jet milling: Surface contamination and quality analysis in the context of maintenance, Wear 477 (2021) 203833 [CrossRef] [Google Scholar]
  32. P. Karmiris-Obratański, N.E. Karkalos, R. Kudelski, E.L. Papazoglou, A.P. Markopoulos, Experimental study on the correlation of cutting head vibrations and kerf characteristics during abrasive waterjet cutting of titanium alloy, Procedia CIRP 101 (2021) 226–229 [CrossRef] [Google Scholar]
  33. P. Karmiris-Obratański, N.E. Karkalos, A. Tzotzis, P. Kyratsis, A.P. Markopoulos, Experimental analysis and soft computing modeling of abrasive waterjet milling of steel workpieces, in: MATEC Web Conf., EDP Sciences, 2020, p. 1031 [Google Scholar]
  34. F. Botko, P. Hlaváček, D. Lehocká, V. Foldyna, M. Hatala, V. Simkulet, Effect of abrasive water jet machining on the geometry of shapes in selected tool steels, in: Adv. Water Jet. Sel. Pap. from Int. Conf. Water Jet 2019-Research, Dev. Appl. Novemb. 20-22, 2019, Čeladná, Czech Repub., Springer, 2021, pp. 49–55 [Google Scholar]
  35. R. Singh, V. Singh, T.V.K. Gupta, An experimental study on surface roughness in slicing tungsten carbide with abrasive water jet machining, in: Adv. Mech. Eng. Sel. Proc. ICAME 2020, Springer, 2021, pp. 353–359. [CrossRef] [Google Scholar]
  36. S.P. Jani, A. Senthil Kumar, M.A. Khan, A. Sujin Jose, Design and optimisation of unit production cost for AWJ process on machining hybrid natural fibre composite material, Int. J. Light. Mater. Manuf. 4 (2021) 491–497 [Google Scholar]
  37. F. Ceritbinmez, A. Yapici, An investigation on cutting of the MWCNTs-doped composite plates by AWJ, Arab. J. Sci. Eng. 45 (2020) 5129–5141 [CrossRef] [Google Scholar]
  38. M. Altin Karataş, H. Gökkaya, S. Akincioğlu, M.A. Biberci, Investigation of the effect of AWJ drilling parameters for delamination factor and surface roughness on GFRP composite material, Multidiscip. Model. Mater. Struct. 18 (2022) 734–753 [CrossRef] [Google Scholar]
  39. M. Putz, M. Dix, F. Morczinek, M. Dittrich, Suspension technology for abrasive waterjet (AWJ) cutting of ceramics, Procedia CIRP 77 (2018) 367–370 [CrossRef] [Google Scholar]
  40. P. Wang, X. Miao, M. Wu, P. Zhou, Study on the process of abrasive water jet cutting for zirconia ceramic tubes, Int. J. Adv. Manuf. Technol. (2023) 1–15 [Google Scholar]
  41. D. Mukherjee, W.M. Lim, S. Kumar, N. Donthu, Guidelines for advancing theory and practice through bibliometric research, J. Bus. Res. 148 (2022) 101–115 [CrossRef] [Google Scholar]
  42. N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, W. Marc, How to conduct a bibliometric analysis: An overview and guidelines, J. Bus. Res. 133 (2021) 285–296 [CrossRef] [Google Scholar]
  43. M. Akin, S.P. Eyduran, V. Krauter, Food packaging related research trends in the academic discipline of food science and technology: A bibliometric analysis, Clean. Circ. Bioeconomy 5 (2023) 100046. [CrossRef] [Google Scholar]
  44. M.-H. Wang, Y.-S. Ho, H.-Z. Fu, Global performance and development on sustainable city based on natural science and social science research: A bibliometric analysis, Sci. Total Environ. 666 (2019) 1245–1254 [CrossRef] [Google Scholar]
  45. S. Goyal, S. Chauhan, P. Mishra, Circular economy research: A bibliometric analysis (2000-2019) and future research insights, J. Clean. Prod. 287 (2021) 125011 [CrossRef] [Google Scholar]
  46. J.-A. Marín-Marín, A.-J. Moreno-Guerrero, P. Dúo-Terrón, J. López-Belmonte, STEAM in education: A bibliometric analysis of performance and co-words in Web of Science, Int. J. STEM Educ. 8 (2021) 41 [CrossRef] [Google Scholar]
  47. C. Forliano, P. De Bernardi, D. Yahiaoui, Entrepreneurial universities: A bibliometric analysis within the business and management domains, Technol. Forecast. Soc. Change 165 (2021) 120522 [CrossRef] [Google Scholar]
  48. B.X. Tran, G.T. Vu, G.H. Ha, Q.-H. Vuong, M.-T. Ho, T.-T. Vuong, V.-P. La, M.-T. Ho, K.-C.P. Nghiem, H.L.T. Nguyen, Global evolution of research in artificial intelligence in health and medicine: A bibliometric study, J. Clin. Med. 8 (2019) 360 [CrossRef] [Google Scholar]
  49. M. Bodnariuk, R. Melentiev, Bibliometric analysis of micro-nano manufacturing technologies, Nanotechnol. Precis. Eng. 2 (2019) 61–70 [CrossRef] [Google Scholar]
  50. D. Alexandre, M. Paulo, S. De Arruda, Assessment of researches and case studies on cloud manufacturing: A bibliometric analysis, J. Manuf. Syst. (2021) 691–705 [Google Scholar]
  51. T.C. Dzogbewu, N. Amoah, S.A. Jnr, S.K. Fianko, D.J. de Beer, Multi-material additive manufacturing of electronics components: A bibliometric analysis, Results Eng. 19 (2023) 101318 [CrossRef] [Google Scholar]
  52. M.U. Obi, P. Pradel, M. Sinclair, R. Bibb, A bibliometric analysis of research in design for additive manufacturing, Rapid Prototyp. J. 28 (2022) 967–987 [CrossRef] [Google Scholar]
  53. Y. Bhatt, K. Ghuman, A. Dhir, Sustainable manufacturing: Bibliometrics and content analysis, J. Clean. Prod. 260 (2020) 120988 [CrossRef] [Google Scholar]
  54. R.I. De Oliveira, S.O. Sousa, F.C. De Campos, Lean manufacturing implementation: Bibliometric analysis 2007-2018, Int. J. Adv. Manuf. Technol. 101 (2019) 979–988 [CrossRef] [Google Scholar]
  55. C.-H. Lee, C.-L. Liu, A.J.C. Trappey, J.P.T. Mo, K.C. Desouza, Understanding digital transformation in advanced manufacturing and engineering: A bibliometric analysis, topic modeling and research trend discovery, Adv. Eng. Inform. 50 (2021) 101428 [CrossRef] [Google Scholar]
  56. S. Tiwari, P.C. Bahuguna, R. Srivastava, Smart manufacturing and sustainability: A bibliometric analysis, Benchmarking Int. J. (2022) [Google Scholar]
  57. T. Lv, L. Wang, H. Xie, X. Zhang, Y. Zhang, Evolutionary overview of water resource management (1990-2019) based on a bibliometric analysis in Web of Science, Ecol. Inform. 61 (2021) 101218 [CrossRef] [Google Scholar]
  58. M.J. Becerra, M.A. Pimentel, E.B. De Souza, G.I. Tovar, Geospatiality of climate change perceptions on coastal regions: A systematic bibliometric analysis, Geogr. Sustain. 1 (2020) 209–219 [Google Scholar]
  59. P. García-Sánchez, A.M. Mora, P.A. Castillo, I.J. Pérez, A bibliometric study of the research area of videogames using Dimensions.ai database, Procedia Comput. Sci. 162 (2019) 737–744 [CrossRef] [Google Scholar]
  60. L.M. El Ayoubi, J. El Masri, M. Machaalani, S. El Hage, P. Salameh, Contribution of Arab world in transplant research: A PubMed-based bibliometric analysis, Transpl. Immunol. 68 (2021) 101432 [CrossRef] [Google Scholar]
  61. H.K. Baker, S. Kumar, N. Pandey, Forty years of the Journal of Futures Markets: A bibliometric overview, J. Futur. Mark. 41 (2021) 1027–1054 [CrossRef] [Google Scholar]
  62. Z. Zhen-yu, Z. Qiu-yang, D. Cong, Y. Ju-yu, P. Zhong-yu, A review of the development of surface burnishing process technique based on bibliometric analysis and visualisation, Int. J. Adv. Manuf. Technol. 115 (2021) 1955–1999 [CrossRef] [Google Scholar]
  63. T.C. Dzogbewu, N. Amoah, S.K. Fianko, S. Afrifa, D. De Beer, Additive manufacturing towards product production: A bibliometric analysis, Manuf. Rev. 9 (2022) 1–21 [Google Scholar]
  64. N.J. Griffiths, R.G. Godding, A preliminary investigation into abrasive water jet cutting of cast iron, (1980) [Google Scholar]
  65. J.E. Hirsch, An index to quantify an individual's scientific research output, Proc. Natl. Acad. Sci. USA 102 (2005) 16569–16572 [CrossRef] [Google Scholar]
  66. L. Bertoli-Barsotti, T. Lando, A theoretical model of the relationship between the h-index and other simple citation indicators, Scientometrics 111 (2017) 1415–1448 [CrossRef] [Google Scholar]
  67. M.K. Paliwal, S. Jakhar, V. Sharma, Nano-enhanced phase change materials for energy storage in photovoltaic thermal management systems: A bibliometric and thematic analysis, Int. J. Thermofluids 17 (2023) 100310. [CrossRef] [Google Scholar]
  68. M. Hashish, A modeling study of metal cutting with abrasive waterjets, J. Eng. Mater. Technol. Trans. ASME 106 (1984) 88–100 [CrossRef] [Google Scholar]
  69. T.G. Gutowski, M.S. Branham, J.B. Dahmus, A.J. Jones, A. Thiriez, D.P. Sekulic, Thermodynamic analysis of processes, Environ. Sci. Technol. 43 (2009) 1584–1590 [CrossRef] [Google Scholar]
  70. D. Arola, C.L. Williams, Estimating the fatigue stress concentration factor of machined surfaces, Int. J. Fatigue 24 (2002) 923–930 [CrossRef] [Google Scholar]
  71. D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP, Int. J. Mach. Tools Manuf. 48 (2008) 1464–1473 [CrossRef] [Google Scholar]
  72. F. Müller, J. Monaghan, Non-conventional machining of particle reinforced metal matrix composite, Int. J. Mach. Tools Manuf. 40 (2000) 1351–1366 [CrossRef] [Google Scholar]
  73. U. Çaydaş, A. Hasçalık, A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method, J. Mater. Process. Technol. 202 (2008) 574–582 [CrossRef] [Google Scholar]
  74. M. Hashish, A model for abrasive-waterjet (AWJ) machining, J. Eng. Mater. Technol. 111 (1989) 154–162 [CrossRef] [Google Scholar]
  75. D.K. Shanmugam, T. Nguyen, J. Wang, A study of delamination on graphite/epoxy composites in abrasive waterjet machining, Compos. Part A Appl. Sci. Manuf. 39 (2008) 923–92 [CrossRef] [Google Scholar]
  76. M.A. Azmir, A.K. Ahsan, A study of abrasive water jet machining process on glass/epoxy composite laminate, J. Mater. Process. Technol. 209 (2009) 6168–6173 [CrossRef] [Google Scholar]
  77. J. Wang, Abrasive waterjet machining of polymer matrix composites − cutting performance, erosive process and predictive models, Int. J. Adv. Manuf. Technol. 15 (1999) 757–768 [CrossRef] [Google Scholar]
  78. M.A. Azmir, A.K. Ahsan, Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining, J. Mater. Process. Technol. 198 (2008) 122–128 [CrossRef] [Google Scholar]
  79. M.S. ElTobgy, E. Ng, M.A. Elbestawi, Finite element modeling of erosive wear, Int. J. Mach. Tools Manuf. 45 (2005) 1337–1346 [CrossRef] [Google Scholar]
  80. H. Liu, J. Wang, N. Kelson, R.J. Brown, A study of abrasive waterjet characteristics by CFD simulation, J. Mater. Process. Technol. 153–154 (2004) 488–493 [CrossRef] [Google Scholar]
  81. A. Hascalik, U. Çaydaş, H. Gürün, Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy, Mater. Des. 28 (2007) 1953–1957 [CrossRef] [Google Scholar]
  82. M. Hashish, Pressure effects in abrasive-waterjet (AWJ) machining, J. Eng. Mater. Technol. 111 (1989) 221–228 [CrossRef] [Google Scholar]
  83. D.K. Shanmugam, S.H. Masood, An investigation on kerf characteristics in abrasive waterjet cutting of layered composites, J. Mater. Process. Technol. 209 (2009) 3887–3893 [CrossRef] [Google Scholar]
  84. C. Atas, C. Sevim, On the impact response of sandwich composites with cores of balsa wood and PVC foam, Compos. Struct. 93 (2010) 40–48 [CrossRef] [Google Scholar]
  85. M. Haddad, R. Zitoune, H. Bougherara, F. Eyma, B. Castanié, Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behaviour, Compos. Part B Eng. 57 (2014) 136–143 [CrossRef] [Google Scholar]
  86. R. Kovacevic, Sensing the abrasive waterjet nozzle wear, Int. J. Waterjet Technol. 2 (1994). [Google Scholar]
  87. N. Yuvaraj, M. Pradeep Kumar, Multiresponse optimisation of abrasive water jet cutting process parameters using TOPSIS approach, Mater. Manuf. Process. 30 (2015) 882–889 [CrossRef] [Google Scholar]
  88. A. Świerczyńska, B. Varbai, C. Pandey, D. Fydrych, Exploring the trends in flux-cored arc welding: Scientometric analysis approach, Int. J. Adv. Manuf. Technol. 126 (2023) 1–24 [CrossRef] [Google Scholar]
  89. H. Sharma, H. Kumar, A. Gupta, M.A. Shah, Computer vision in manufacturing: A bibliometric analysis and future research propositions, Int. J. Adv. Manuf. Technol. 127 (2023) 5691–5710 [CrossRef] [Google Scholar]
  90. P.H. Shipway, G. Fowler, I.R. Pashby, Characteristics of the surface of a titanium alloy following milling with abrasive waterjets, Wear 258 (2005) 123–132 [CrossRef] [Google Scholar]
  91. M. Hashish, Visualisation of the abrasive-waterjet cutting process, Exp. Mech. 28 (1988) 159–169 [CrossRef] [Google Scholar]
  92. M. Hashish, Observations of wear of abrasive-waterjet nozzle materials, J. Tribol. 116 (1994) 439–444) [CrossRef] [Google Scholar]
  93. M. Nanduri, D.G. Taggart, T.J. Kim, C. Haney, F.P. Skeele, Effect of the inlet taper angle on AWJ nozzle wear, in: Proc. 9th Am. Water Jet Conf., 1997, pp. 223–238. [Google Scholar]
  94. A. Akkurt, M.K. Kulekci, U. Seker, F. Ercan, Effect of feed rate on surface roughness in abrasive waterjet cutting applications, J. Mater. Process. Technol. 147 (2004) 389–396 [CrossRef] [Google Scholar]
  95. D. Arola, M. Ramulu, Material removal in abrasive waterjet machining of metals − surface integrity and texture, Wear 210 (1997) 50–58 [CrossRef] [Google Scholar]
  96. G. Aydin, I. Karakurt, K. Aydiner, An investigation on surface roughness of granite machined by abrasive waterjet, Bull. Mater. Sci. 34 (2011) 985–992 [CrossRef] [Google Scholar]
  97. M.K. Babu, O.V.K. Chetty, A study on the use of single mesh size abrasives in abrasive waterjet machining, Int. J. Adv. Manuf. Technol. 29 (2006) 532–540 [CrossRef] [Google Scholar]
  98. L. Chen, Some investigations on AWJ cutting performance, Pergamon 36 (1996) 1201–1206 [Google Scholar]
  99. F.L. Chen, E. Siores, The effect of cutting jet variation on surface striation formation in abrasive water jet cutting, J. Mater. Process. Technol. 135 (2003) 1–5 [CrossRef] [Google Scholar]
  100. F.L. Chen, E. Siores, K. Patel, Improving the cut surface qualities using different controlled nozzle oscillation techniques, Int. J. Mach. Tools Manuf. 42 (2002) 717–722 [CrossRef] [Google Scholar]
  101. M.S. ElTobgy, E. Ng, M.A. Elbestawi, Finite element modeling of erosive wear, Int. J. Mach. Tools Manuf. 45 (2005) 1337–1346 [CrossRef] [Google Scholar]
  102. M. Hashish, On the modeling of abrasive-waterjet cutting, in: Proc. 7th Int. Symp. Jet Cut. Technol., 1984, pp. 249–265 [Google Scholar]
  103. M. Hashish, Observations of wear of abrasive-waterjet nozzle materials, J. Tribol. 116 (1994) 439–444 [CrossRef] [Google Scholar]
  104. M.C. Kong, S. Anwar, J. Billingham, D.A. Axinte, Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: Part I—single straight paths, Int. J. Mach. Tools Manuf. 53 (2012) 58–68 [CrossRef] [Google Scholar]
  105. M. Junkar, B. Jurisevic, M. Fajdiga, M. Grah, Finite element analysis of single-particle impact in abrasive water jet machining, Int. J. Impact Eng. 32 (2006) 1095–1112 [CrossRef] [Google Scholar]
  106. H. Liu, J. Wang, N. Kelson, R.J. Brown, A study of abrasive waterjet characteristics by CFD simulation, J. Mater. Process. Technol. 153 (2004) 488–493 [CrossRef] [Google Scholar]
  107. A. Lebar, M. Junkar, Simulation of abrasive water jet cutting process: Part 1. Unit event approach, Model. Simul. Mater. Sci. Eng. 12 (2004) 1159. [CrossRef] [Google Scholar]
  108. V.A. Prabu, S.T. Kumaran, M. Uthayakumar, Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite, J. Nat. Fibers 14 (2017) 450–457 [CrossRef] [Google Scholar]
  109. I.W. Ming Ming, A.I. Azmi, L.C. Chuan, A.F. Mansor, Experimental study and empirical analyses of abrasive waterjet machining for hybrid carbon/glass fiber-reinforced composites for improved surface quality, Int. J. Adv. Manuf. Technol. 95 (2018) 3809–3822 [CrossRef] [Google Scholar]
  110. A. Beaucamp, Y. Namba, R. Freeman, Dynamic multiphase modeling and optimisation of fluid jet polishing process, CIRP Ann. 61 (2012) 315–318 [CrossRef] [Google Scholar]
  111. D.H. Ahmed, J. Naser, R.T. Deam, Particles impact characteristics on cutting surface during the abrasive water jet machining: Numerical study, J. Mater. Process. Technol. 232 (2016) 116–130 [CrossRef] [Google Scholar]
  112. C. Narayanan, R. Balz, D.A. Weiss, K.C. Heiniger, Modelling of abrasive particle energy in water jet machining, J. Mater. Process. Technol. 213 (2013) 2201–2210 [CrossRef] [Google Scholar]
  113. U. Prisco, M.C. D'Onofrio, Three-dimensional CFD simulation of two-phase flow inside the abrasive water jet cutting head, Int. J. Comput. Methods Eng. Sci. Mech. 9 (2008) 300–319 [Google Scholar]
  114. P. Lozano Torrubia, Stochastic modelling of abrasive waterjet controlled-depth machining, 2016. [Google Scholar]
  115. A.W. Momber, Energy transfer during the mixing of air and solid particles into a high-speed waterjet: an impact-force study, Exp. Therm. Fluid Sci. 25 (2001) 31–41 [CrossRef] [Google Scholar]
  116. D. Liu, H. Zhu, C. Huang, J. Wang, P. Yao, Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study, Int. J. Adv. Manuf. Technol. 87 (2016) 2673–2682 [CrossRef] [Google Scholar]
  117. X. Long, X. Ruan, Q. Liu, Z. Chen, S. Xue, Z. Wu, Numerical investigation on the internal flow and the particle movement in the abrasive waterjet nozzle, Powder Technol. 314 (2017) 635–640 [CrossRef] [Google Scholar]
  118. R. Ruiz-Garcia, P.F. Mayuet Ares, J.M. Vazquez-Martinez, J. Salguero Gómez, Influence of abrasive waterjet parameters on the cutting and drilling of CFRP/UNS A97075 and UNS A97075/CFRP stacks, Materials (Basel) 12 (2018) 107 [CrossRef] [Google Scholar]
  119. A.A. El-Domiaty, A.A. Abdel-Rahman, Fracture mechanics-based model of abrasive waterjet cutting for brittle materials, Int. J. Adv. Manuf. Technol. 13 (1997) 172–181 [CrossRef] [Google Scholar]
  120. M. Haddad, R. Zitoune, H. Bougherara, F. Eyma, B. Castanié, Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behaviour, Compos. Part B Eng. 57 (2014) 136–143 [CrossRef] [Google Scholar]
  121. A. Hejjaji, R. Zitoune, L. Crouzeix, S. Le Roux, F. Collombet, Surface and machining induced damage characterisation of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behaviour, Wear 376 (2017) 1356–1364 [CrossRef] [Google Scholar]
  122. I.M. Hlavacova, V. Geryk, Abrasives for water-jet cutting of high-strength and thick hard materials, Int. J. Adv. Manuf. Technol. 90 (2017) 1217–1224 [CrossRef] [Google Scholar]
  123. B. Jagadeesh, P. Dinesh Babu, M. Nalla Mohamed, P. Marimuthu, Experimental investigation and optimisation of abrasive water jet cutting parameters for the improvement of cut quality in carbon fiber reinforced plastic laminates, J. Ind. Text. 48 (2018) 178–200 [CrossRef] [Google Scholar]
  124. V. Kavimani, P.M. Gopal, K.R. Sumesh, N.V. Kumar, Multi response optimisation on machinability of SiC waste fillers reinforced polymer matrix composite using taguchi's coupled grey relational analysis, Silicon 14 (2022) 65–73 [CrossRef] [Google Scholar]
  125. M. Li, M. Huang, X. Yang, S. Li, K. Wei, Experimental study on hole quality and its impact on tensile behaviour following pure and abrasive waterjet cutting of plain woven CFRP laminates, Int. J. Adv. Manuf. Technol. 99 (2018) 2481–2490 [CrossRef] [Google Scholar]
  126. A. Azhari, C. Schindler, C. Godard, J. Gibmeier, E. Kerscher, Effect of multiple passes treatment in waterjet peening on fatigue performance, Appl. Surf. Sci. 388 (2016) 468–474 [CrossRef] [Google Scholar]
  127. A. Sambruno, F. Bañon, J. Salguero, B. Simonet, M. Batista, Kerf taper defect minimisation based on abrasive waterjet machining of low thickness thermoplastic carbon fiber composites C/TPU, Materials (Basel) 12 (2019) 4192 [CrossRef] [Google Scholar]
  128. D.S. Srinivasu, D.A. Axinte, Mask-less pocket milling of composites by abrasive waterjets: an experimental investigation, J. Manuf. Sci. Eng. 136 (2014) 041005 [CrossRef] [Google Scholar]
  129. K.R. Sumesh, K. Kanthavel, Abrasive water jet machining of Sisal/Pineapple epoxy hybrid composites with the addition of various fly ash filler, Mater. Res. Express 7 (2020) 035303 [CrossRef] [Google Scholar]
  130. R.K. Thakur, K.K. Singh, Experimental investigation and optimisation of abrasive water jet machining parameter on multi-walled carbon nanotube doped epoxy/carbon laminate, Measurement 164 (2020) 108093 [CrossRef] [Google Scholar]
  131. M. Altin Karataş, A.R. Motorcu, H. Gökkaya, Optimisation of machining parameters for kerf angle and roundness error in abrasive water jet drilling of CFRP composites with different fiber orientation angles, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 173 [CrossRef] [Google Scholar]
  132. F. Bañon, A. Sambruno, M. Batista, B. Simonet, J. Salguero, Study of the surface quality of carbon fiber-reinforced thermoplastic matrix composite (CFRTP) machined by abrasive water jet (AWJM), Int. J. Adv. Manuf. Technol. 107 (2020) 3299–3313 [CrossRef] [Google Scholar]
  133. A. Dhanawade, S. Kumar, Experimental study of delamination and kerf geometry of carbon epoxy composite machined by abrasive water jet, J. Compos. Mater. 51 (2017) 3373–3390 [CrossRef] [Google Scholar]
  134. M. Armağan, A.A. Arici, Cutting performance of glass-vinyl ester composite by abrasive water jet, Mater. Manuf. Process. 32 (2017) 1715–1722 [CrossRef] [Google Scholar]
  135. P.A. Dumbhare, S. Dubey, Y.V. Deshpande, A.B. Andhare, P.S. Barve, Modelling and multi-objective optimisation of surface roughness and kerf taper angle in abrasive water jet machining of steel, J. Brazilian Soc. Mech. Sci. Eng. 40 (2018) 259 [CrossRef] [Google Scholar]
  136. K. Balaji, M.S. Kumar, N. Yuvaraj, Multi objective Taguchi-grey relational analysis and krill herd algorithm approaches to investigate the parametric optimisation in abrasive water jet drilling of stainless steel, Appl. Soft Comput. 102 (2021) 107075 [CrossRef] [Google Scholar]
  137. A. Nair, S. Kumanan, Multi-performance optimisation of abrasive water jet machining of Inconel 617 using WPCA, Mater. Manuf. Process. 32 (2017) 693–699 [CrossRef] [Google Scholar]
  138. A. Nair, S. Kumanan, Optimisation of size and form characteristics using multi-objective grey analysis in abrasive water jet drilling of Inconel 617, J. Brazilian Soc. Mech. Sci. Eng. 40 (2018) 1–15 [CrossRef] [Google Scholar]
  139. P.J. Pawar, U.S. Vidhate, M.Y. Khalkar, Improving the quality characteristics of abrasive water jet machining of marble material using multi-objective artificial bee colony algorithm, J. Comput. Des. Eng. 5 (2018) 319–328 [Google Scholar]
  140. R.V. Rao, D.P. Rai, J. Balic, Multi-objective optimisation of abrasive waterjet machining process using Jaya algorithm and PROMETHEE method, J. Intell. Manuf. 30 (2019) 2101–2127 [CrossRef] [Google Scholar]
  141. M. Santhanakumar, R. Adalarasan, M. Rajmohan, Experimental modelling and analysis in abrasive waterjet cutting of ceramic tiles using grey-based response surface methodology, Arab. J. Sci. Eng. 40 (2015) 3299–3311 [CrossRef] [Google Scholar]
  142. R. Shukla, D. Singh, Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimisation techniques, Swarm Evol. Comput. 32 (2017) 167–183 [CrossRef] [Google Scholar]
  143. R. Shukla, D. Singh, Selection of parameters for advanced machining processes using firefly algorithm, Eng. Sci. Technol. an Int. J. 20 (2017) 212–221 [CrossRef] [Google Scholar]
  144. N. Yusup, A. Sarkheyli, A.M. Zain, S.Z.M. Hashim, N. Ithnin, Estimation of optimal machining control parameters using artificial bee colony, J. Intell. Manuf. 25 (2014) 1463–1472 [CrossRef] [Google Scholar]
  145. A.M. Zain, H. Haron, S. Sharif, Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA, Expert Syst. Appl. 38 (2011) 8316–8326 [CrossRef] [Google Scholar]
  146. A.M. Zain, H. Haron, S. Sharif, Optimisation of process parameters in the abrasive waterjet machining using integrated SA-GA, Appl. Soft Comput. 11 (2011) 5350–5359 [CrossRef] [Google Scholar]
  147. S. Chakraborty, A. Mitra, Parametric optimisation of abrasive water-jet machining processes using grey wolf optimizer, Mater. Manuf. Process. 33 (2018) 1471–1482 [CrossRef] [Google Scholar]
  148. A.M. Zain, H. Haron, S. Sharif, Genetic algorithm and simulated annealing to estimate optimal process parameters of the abrasive waterjet machining, Eng. Comput. 27 (2011) 251–259 [CrossRef] [Google Scholar]
  149. S. Chakraborty, P.P. Das, V. Kumar, Application of grey-fuzzy logic technique for parametric optimisation of non-traditional machining processes, Grey Syst. Theory Appl. 8 (2018) 46–68 [CrossRef] [Google Scholar]
  150. Jagadish, S. Bhowmik, A. Ray, Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach, J. Intell. Manuf. 30 (2019) 2965–2979 [CrossRef] [Google Scholar]
  151. A. Khan, K.P. Maity, Application of MCDM-based TOPSIS method for the optimisation of multi quality characteristics of modern manufacturing processes, Int. J. Eng. Res. Africa. 23 (2016) 33–51 [CrossRef] [Google Scholar]
  152. A. Khan, K.P. Maity, Parametric optimisation of some non-conventional machining processes using MOORA method, Int. J. Eng. Res. Africa. 20 (2016) 19–40 [Google Scholar]
  153. M. Manoj, G.R. Jinu, T. Muthuramalingam, Multi response optimisation of AWJM process parameters on machining TiB2 particles reinforced Al7075 composite using Taguchi-DEAR methodology, Silicon 10 (2018) 2287–2293 [CrossRef] [Google Scholar]
  154. A. Mat Deris, A. Mohd Zain, R. Sallehuddin, Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining, Meccanica 48 (2013) 1937–1945 [CrossRef] [Google Scholar]
  155. M.A. Mellal, E.J. Williams, Parameter optimisation of advanced machining processes using cuckoo optimisation algorithm and hoopoe heuristic, J. Intell. Manuf. 27 (2016) 927–942 [CrossRef] [Google Scholar]
  156. D. Arola, M.L. McCain, S. Kunaporn, M. Ramulu, Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress, Wear 249 (2001) 943–950 [CrossRef] [Google Scholar]
  157. D. Arola, C.L. Williams, Estimating the fatigue stress concentration factor of machined surfaces, Int. J. Fatigue 24 (2002) 923–930 [CrossRef] [Google Scholar]
  158. D. Arola, A.E. Alade, W. Weber, Improving fatigue strength of metals using abrasive waterjet peening, Mach. Sci. Technol. 10 (2006) 197–218 [CrossRef] [Google Scholar]
  159. J. Holmberg, J. Berglund, A. Wretland, T. Beno, Evaluation of surface integrity after high energy machining with EDM, laser beam machining and abrasive water jet machining of alloy 718, Int. J. Adv. Manuf. Technol. 100 (2019) 1575–1591 [CrossRef] [Google Scholar]
  160. M.C. Kong, D. Axinte, Response of titanium aluminide alloy to abrasive waterjet cutting: geometrical accuracy and surface integrity issues versus process parameters, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223 (2009) 19–42 [CrossRef] [Google Scholar]
  161. K.B. Mardi, A.R. Dixit, A. Mallick, A. Pramanik, B. Ballokova, P. Hvizdos, J. Foldyna, J. Scucka, P. Hlavacek, M. Zelenak, Surface integrity of Mg-based nanocomposite produced by abrasive water jet machining (AWJM), Mater. Manuf. Process. 32 (2017) 1707–1714 [CrossRef] [Google Scholar]
  162. A.K. Srivastava, A. Nag, A.R. Dixit, S. Tiwari, J. Scucka, M. Zelenak, S. Hloch, P. Hlavacek, Surface integrity in tangential turning of hybrid MMC A359/B4C/Al2O3 by abrasive waterjet, J. Manuf. Process. 28 (2017) 11–20 [CrossRef] [Google Scholar]
  163. I. Karakurt, G. Aydin, K. Aydiner, Effect of the abrasive grain size on the cutting performance of concrete in AWJ technology, Technology 13 (2010) 145–150 [Google Scholar]
  164. G. Aydin, Performance of recycling abrasives in rock cutting by abrasive water jet, J. Cent. South Univ. 22 (2015) 1055–1061 [CrossRef] [Google Scholar]
  165. G. Aydin, I. Karakurt, K. Aydiner, Performance of abrasive waterjet in granite cutting: influence of the textural properties, J. Mater. Civ. Eng. 24 (2012) 944–949 [CrossRef] [Google Scholar]
  166. G. Aydin, S. Kaya, I. Karakurt, Utilisation of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble, J. Clean. Prod. 159 (2017) 241–247 [CrossRef] [Google Scholar]
  167. I. Karakurt, G. Aydin, K. Aydiner, Analysis of the kerf angle of the granite machined by abrasive waterjet (AWJ), (2011) [Google Scholar]
  168. S. Liu, Y. Cui, Y. Chen, C. Guo, Numerical research on rock breaking by abrasive water jet-pick under confining pressure, Int. J. Rock Mech. Min. Sci. 120 (2019) 41–49 [CrossRef] [Google Scholar]
  169. S. Liu, F. Zhou, H. Li, Y. Chen, F. Wang, C. Guo, Experimental investigation of hard rock breaking using a conical pick assisted by abrasive water jet, Rock Mech. Rock Eng. 53 (2020) 4221–4230 [CrossRef] [Google Scholar]
  170. Y. Lu, J. Tang, Z. Ge, B. Xia, Y. Liu, Hard rock drilling technique with abrasive water jet assistance, Int. J. Rock Mech. Min. Sci. 60 (2013) 47–56 [CrossRef] [Google Scholar]
  171. A.I. Hassan, C. Chen, R. Kovacevic, On-line monitoring of depth of cut in AWJ cutting, Int. J. Mach. Tools Manuf. 44 (2004) 595–605 [CrossRef] [Google Scholar]
  172. S. Hloch, J. Valíček, Prediction of distribution relationship of titanium surface topography created by abrasive waterjet, Int. J. Surf. Sci. Eng. 5 (2011) 152–168 [CrossRef] [Google Scholar]
  173. S. Hloch, J. Valíček, Topographical anomaly on surfaces created by abrasive waterjet, Int. J. Adv. Manuf. Technol. 59 (2012) 593–604 [CrossRef] [Google Scholar]
  174. P. Hreha, A. Radvanska, L. Knapcikova, G.M. Królczyk, S. Legutko, J.B. Królczyk, S. Hloch, P. Monka, Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material, Metrol. Meas. Syst. 22 (2015) 315–326 [CrossRef] [Google Scholar]
  175. R. Pahuja, M. Ramulu, Surface quality monitoring in abrasive water jet machining of Ti6Al4V-CFRP stacks through wavelet packet analysis of acoustic emission signals, Int. J. Adv. Manuf. Technol. 104 (2019) 4091–4104 [CrossRef] [Google Scholar]
  176. R. Kovacevic, H.S. Kwak, R.S. Mohan, Acoustic emission sensing as a tool for understanding the mechanisms of abrasive water jet drilling of difficult-to-machine materials, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 212 (1998) 45–58 [CrossRef] [Google Scholar]
  177. V. Peržel, P. Hreha, S. Hloch, H. Tozan, J. Valíček, Vibration emission as a potential source of information for abrasive waterjet quality process control, Int. J. Adv. Manuf. Technol. 61 (2012) 285–294 [CrossRef] [Google Scholar]
  178. A. Rabani, I. Marinescu, D. Axinte, Acoustic emission energy transfer rate: A method for monitoring abrasive waterjet milling, Int. J. Mach. Tools Manuf. 61 (2012) 80–89 [CrossRef] [Google Scholar]
  179. A. Alberdi, A. Rivero, L.N. López De Lacalle, I. Etxeberria, A. Suárez, Effect of process parameter on the kerf geometry in abrasive water jet milling, Int. J. Adv. Manuf. Technol. 51 (2010) 467–480 [CrossRef] [Google Scholar]
  180. G. Fowler, I.R. Pashby, P.H. Shipway, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V, Wear 266 (2009) 613–620 [CrossRef] [Google Scholar]
  181. M. Hashish, Controlled-depth milling of isogrid structures with AWJs, (1998). [Google Scholar]
  182. A. Alberdi, A. Rivero, L.N. López de Lacalle, Experimental study of the slot overlapping and tool path variation effect in abrasive waterjet milling, (2011). [Google Scholar]
  183. P.K. Farayibi, J.W. Murray, L. Huang, F. Boud, P.K. Kinnell, A.T. Clare, Erosion resistance of laser clad Ti-6Al-4V/WC composite for waterjet tooling, J. Mater. Process. Technol. 214 (2014) 710–72 [CrossRef] [Google Scholar]
  184. Z. Zhang, T. Yu, R. Kovacevic, Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC, Appl. Surf. Sci. 410 (2017) 225–240 [CrossRef] [Google Scholar]
  185. M. Mieszala, P.L. Torrubia, D.A. Axinte, J.J. Schwiedrzik, Y. Guo, S. Mischler, J. Michler, L. Philippe, Erosion mechanisms during abrasive waterjet machining: model microstructures and single particle experiments, J. Mater. Process. Technol. 247 (2017) 92–102 [CrossRef] [Google Scholar]
  186. J. Wang, Particle velocity models for ultra-high pressure abrasive waterjets, J. Mater. Process. Technol. 209 (2009) 4573–4577 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.