Issue |
Manufacturing Rev.
Volume 12, 2025
Advanced Manufacturing Research – Latest Developments
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/mfreview/2025009 | |
Published online | 20 May 2025 |
- H. Wang, J. Shao, W. Zhang, Z. Yan, Z. Huang, X. Liang, Three-point bending response and energy absorption of novel sandwich beams with combined re-entrant double-arrow auxetic honeycomb cores, Compos. Struct. 326 (2023) 117606 [CrossRef] [Google Scholar]
- L. Li, Q. He, X. Jing, Y. Jiang, D. Yan, Study on three-point bending behavior of sandwich beams with novel auxetic honeycomb core, Mater. Today Commun. 35 (2023) 106259 [CrossRef] [Google Scholar]
- Y. Karsandik, B. Sabuncuoglu, B. Yildirim, V.V. Silberschmidt, Impact behavior of sandwich composites for aviation applications: A review, Compos. Struct. 314 (2023) 116941 [CrossRef] [Google Scholar]
- H. Guo, H. Yuan, J. Zhang, D. Ruan, Review of sandwich structures under impact loadings: Experimental, numerical and theoretical analysis, Thin-Wall. Struct. 196 (2024) 111541 [CrossRef] [Google Scholar]
- Q. Ma, M.R.M. Rejab, J.P. Siregar, Z. Guan, A review of the recent trends on core structures and impact response of sandwich panels, J. Compos. Mater. 55 (2021) 2513 [CrossRef] [Google Scholar]
- C. Li, H.-S. Shen, H. Wang, Nonlinear bending of sandwich beams with functionally graded negative Poisson's ratio honeycomb core, Compos. Struct. 212 (2019) 317 [CrossRef] [Google Scholar]
- X. Ren, R. Das, P. Tran, T.D. Ngo, Y.M. Xie, Auxetic metamaterials and structures: a review, Smart Mater. Struct. 27 (2018) 023001 [CrossRef] [Google Scholar]
- Z. Wang, C. Luan, G. Liao, J. Liu, X. Yao, J. Fu, Progress in auxetic mechanical metamaterials: Structures, characteristics, manufacturing methods, and applications, Adv. Eng. Mater. 22 (2020) 2000312 [CrossRef] [Google Scholar]
- M.P. Balan, A.J. Mertens, M.V.A. Raju Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Mater. Today Commun. 34 (2023) 105285 [CrossRef] [Google Scholar]
- H. Yin, W. Zhang, L. Zhu, F. Meng, J. Liu, G. Wen, G. Review on lattice structures for energy absorption properties, Compos. Struct. 304 (2023) 116397 [Google Scholar]
- Y. Liu, C. Zhao, C. Xu, J. Ren, J. Zhong, Auxetic meta-materials and their engineering applications: a review, Eng. Res. Express 5 (2023) 042003 [CrossRef] [Google Scholar]
- A. Joseph, V. Mahesh, D. Harursampath, On the application of additive manufacturing methods for auxetic structures: a review, Adv. Manuf. 9 (2021) 342 [CrossRef] [Google Scholar]
- D. Wannarong, T. Singhanart, A review of sandwich composite structures with 3D printed honeycomb cores, Eng. J. 26 (2022) 27 [CrossRef] [Google Scholar]
- D. Mocerino, M.R. Ricciardi, V. Antonucci, I. Papa, Fused deposition modelling of polymeric auxetic structures: A review, Polymers 15 (2023) 1008 [CrossRef] [Google Scholar]
- L. Mizzi, D. Attard, R. Gatt, A.A. Pozniak, K.W. Wojciechowski, J.N. Grima, Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems, Compos. Part B 80 (2015) 84 [CrossRef] [Google Scholar]
- I.K. Türkoglu, H. Kasim, M. Yazici, Experimental investigation of 3D-printed auxetic core sandwich structures under quasi-static and dynamic compression and bending loads, Int. J. Prot. Struct. 14 (2023) 63 [CrossRef] [Google Scholar]
- B. Ashfaq, G. Hussain, M.B. Khan, M. Ilyas, Mechanical characterisation of innovative 3D‑printed auxetic (NPR) structures: Role of considering anisotropy on accuracy of numerical modeling, Int. J. Adv. Manuf. Technol. 130 (2024) 4845 [CrossRef] [Google Scholar]
- N.K. Choudhry, S.R. Bankar, B. Panda, H. Singh, Experimental and numerical analysis of the bending behavior of 3D printed modified auxetic sandwich structures, Mater. Today: Proc. 56 (2022) 1356 [CrossRef] [Google Scholar]
- X. Zhao, L. Wei, D. Wen, G. Zhu, Q. Yu, Z.D. Ma, Bending response and energy absorption of sandwich beams with novel auxetic honeycomb core, Eng. Struct. 247 (2021) 113204 [CrossRef] [Google Scholar]
- T. Li, L. Wang, Bending behavior of sandwich composite structures with tunable 3D-printed core materials, Compos. Struct. 175 (2017) 46 [CrossRef] [Google Scholar]
- S. Hou, T. Li, Z. Jia, L. Wang, Mechanical properties of sandwich composites with 3D-printed auxetic and non-auxetic lattice cores under low velocity impact, Mater. Des. 160 (2018) 1305 [CrossRef] [Google Scholar]
- D. Harland, A.W. Alshaer, H. Brooks, An experimental and numerical investigation of a novel 3D printed sandwich material for motorsport applications, Procedia Manuf. 36 (2019) 11 [CrossRef] [Google Scholar]
- Y. Hou, Y.H. Tai, C. Lira, F. Scarpa, J.R. Yates, B. Gu, The bending and failure of sandwich structures with auxetic gradient cellular cores, Compos. Part A 49 (2013) 119 [CrossRef] [Google Scholar]
- B.L. Liu, S. Li, Y.S. Li, Bending of FGM sandwich plates with tunable auxetic core using DQM, Eur. J. Mech. A Solids 97 (2023) 104838 [CrossRef] [Google Scholar]
- A. Hamrouni, J.-L. Rebiere, A. El Mahi, M. Beyaoui, M. Haddar, Experimental and numerical investigation of the static behavior of a 3D printed bio-based anti-trichiral sandwich, J. Compos. Mater. 57 (2023) 2161 [CrossRef] [Google Scholar]
- P.-S. Farrugia, R. Gatt, D. Attard, F.R. Attenborough, K.E. Evans, J.N. Grima, The auxetic behavior of a general Star-4 structure, Phys. Status Solidi B 258 (2021) 2100158 [CrossRef] [Google Scholar]
- H. Lu, X. Wang, T. Chen, Quasi-static bending response and energy absorption of a novel sandwich beam with a reinforced auxetic core under the fixed boundary at both ends, Thin-Wall. Struct. 191 (2023) 111011 [CrossRef] [Google Scholar]
- D. Vaes, P. Van Puyvelde, Semi-crystalline feedstock for filament-based 3D printing of polymers, Prog. Polym. Sci. 118 (2021) 101411 [CrossRef] [Google Scholar]
- Y. Schneider, V. Guski, S. Schmauder, J. Kadkhodapour, J. Hufert, A. Grebhardt, C. Bonten, Deformation behavior investigation of auxetic structure made of poly(butylene adipate-co-terephthalate) biopolymers using finite element method, Polymers 15 (2023) 1792 [CrossRef] [Google Scholar]
- E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41 (1993) 389 [CrossRef] [Google Scholar]
- G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31 [CrossRef] [Google Scholar]
- J.-R. Riba, R. Cantero, V. Garcia-Masabet, J. Cailloux, T. Canals, M.L. Maspoch, Multivariate identification of extruded PLA samples from the infrared spectrum, J. Mater. Sci. 55 (2020) 1269–1279 [CrossRef] [Google Scholar]
- N. Jayanth, K. Jaswanthraj, S. Sandeep, N. Harish Mallaya, S. Raghul Siddharth, Effect of heat treatment on mechanical properties of 3D printed PLA, J. Mech. Behav. Biomed. Mater. 123 (2021) 104764 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.