Issue |
Manufacturing Rev.
Volume 12, 2025
Advanced Manufacturing Research – Latest Developments
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/mfreview/2025004 | |
Published online | 05 May 2025 |
- W. Hu, T. Zhang, X. Deng, Z. Liu, J. Tan, Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges, J. Intell. Manuf. Spec. Equip. 2 (2021) 1–34 [Google Scholar]
- A. Burghardt, D. Szybicki, P. Gierlak, K. Kurc, P. Pietruś, R. Cygan, Programming of industrial robots using virtual reality and digital twins, Appl. Sci. 10 (2020) 486 [CrossRef] [Google Scholar]
- Y. Mo, S. Ma, H. Gong, Z. Chen, J. Zhang, D. Tao, Terra: A smart and sensible digital twin framework for robust robot deployment in challenging environments, IEEE Internet Things J. 8 (2021) 14039–14050 [CrossRef] [Google Scholar]
- X. Sun, J. Bao, J. Li, Y. Zhang, S. Liu, B. Zhou, A digital twin-driven approach for the assembly-commissioning of high precision products, Robot. Comput. −Integr. Manuf. 61 (2020) 101839 [CrossRef] [Google Scholar]
- K. Wang, D. Liu, Z. Liu, Q. Wang, J. Tan, An assembly precision analysis method based on a general part digital twin model, Robot. Comput. −Integr. Manuf. 68 (2021) 102089 [CrossRef] [Google Scholar]
- Y. Xiang, T. Schmidt, V. Narayanan, D. Fox, PoseCNN: A convolutional neural network for 6D object pose estimation in cluttered scenes, Robot.: Sci. Syst. (RSS) (2018) [Google Scholar]
- A.S. Periyasamy, M. Schwarz, S. Behnke, Robust 6D object pose estimation in cluttered scenes using semantic segmentation and pose regression networks, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2018) [Google Scholar]
- E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, C. Rother, Learning 6D object pose estimation using 3D object coordinates, in Comput. Vis. − ECCV 2014, edited by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Springer, Cham, 2014) [Google Scholar]
- H. Cheng, Y. Wang, M.Q.-H. Meng, Real-time robot end-effector pose estimation with deep network, in 2020 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas, NV, USA, 2020, pp. 10921–10926, (2020) [CrossRef] [Google Scholar]
- J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, S. Birchfield, Deep object pose estimation for semantic robotic grasping of household objects, Proc. 2nd Conf. Robot Learn, PMLR 87 (2018) 306–316 [Google Scholar]
- Y.-K. Kim, K.-S. Kim, S. Kim, A portable and remote 6-DOF pose sensor system with a long measurement range based on 1-D laser sensors, IEEE Trans. Ind. Electron. 62 (2015) 5722–5729 [CrossRef] [Google Scholar]
- K. Qian, Y. Zhang, Z. Li, P.A. Vargas, M.S. Erden, X. Kong, Precision robotic assembly of industrial components with robust pose estimation and cooperative manipulation, in 2024 IEEE Int. Conf. Ind. Technol. (ICIT), Bristol, United Kingdom, 2024, pp. 1–6, (2024) [Google Scholar]
- M. Hofer, G. Strauß, K. Koulechov, A. Dietz, Definition of accuracy and precision—evaluating CAS-systems, International Congress Series 1281 (2005) 548–552 [CrossRef] [Google Scholar]
- I. Muller, R.M. de Brito, C.E. Pereira, V. Brusamarello, Load cells in force sensing analysis − theory and a novel application, IEEE Instrum. Meas. Mag. 13 (2010) 15–19 [CrossRef] [Google Scholar]
- Y. Ma, K. Du, D. Zhou, J. Zhang, X. Liu, D. Xu, Automatic precision robot assembly system with microscopic vision and force sensor, Int. J. Adv. Robot. Syst. 16 (2019) 172988141985161 [Google Scholar]
- H. Jahn, T. Fröhlich, L. Zentner, Development of an analytical model and method for analyzing deformation in planar load cells, Mech. Mach. Theory 203 (2024) 0094–114X [Google Scholar]
- B. Nazeer, K. Qian, P. Vargas, M.S. Erden, X. Kong, Contact-based pose detection method for small components to optimize the digital twin-driven robotic assembly process, MATEC Web Conf. 401 (2024) Article 13008 [CrossRef] [EDP Sciences] [Google Scholar]
- N. Karlsson, J.-O. Jarrhed, A capacitive sensor for the detection of humans in a robot cell, in 1993 IEEE Instrum. Meas. Technol. Conf, Irvine, CA, USA, 1993 (1993), pp. 164–166 [CrossRef] [Google Scholar]
- B. Šekoranja, D. Bašić, M. Švaco, F. Šuligoj, B. Jerbić, Human-robot interaction based on use of capacitive sensors, Procedia Eng. 69 (2014) 464–468 [CrossRef] [Google Scholar]
- T. Islam, M. Yousuf, M. Nauman, A highly precise cross-capacitive sensor for metal debris detection in insulating oil, Rev. Sci. Instrum. 91 (2020) 025005 [CrossRef] [MathSciNet] [Google Scholar]
- A. Puthanveettil Madathil, X. Luo, Q. Liu, R. Madarkar, C. Walker, A fingerprint approach for computationally efficient digital twins of precision manufacturing processes, MATEC Web Conf. 401 (2024) Article 13004 [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.