Open Access
Review
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 2
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2014001
Published online 21 April 2014
  1. http://www.arcam.com, ArCam AB, accessed in December 2013 [Google Scholar]
  2. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: microstructure and mechanical properties investigation, Intermetallics 19 (2010) 776–781. [CrossRef] [Google Scholar]
  3. M.F. Zäh, S. Lutzmann, Modelling and simulation of electron beam melting, Production Engineering 4 (2010) 15–23. [CrossRef] [Google Scholar]
  4. http://www.youtube.com/watch?v=BxxIVLnAbLw, Oak Ridge National Laboratory, accessed in December 2013. [Google Scholar]
  5. J. Hiemenz, Electron beam melting, Advanced Materials & Processes 165 (2007) 45–46. [Google Scholar]
  6. P. Yu, M. Qian, D. Tomus, C.A. Brice, G.B. Schaffer, B.C. Muddle, Electron beam processing of aluminium alloys, Materials Science Forum 618–619 (2009) 621–626. [CrossRef] [Google Scholar]
  7. D. Cormier, O. Harrysson, H. West, Characterization of H13 steel produced via electron beam melting, Rapid Prototyping Journal 10 (2004) 35–40. [CrossRef] [Google Scholar]
  8. S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting, Metallurgical and Materials Transactions A 41 (2010) 3216–3227. [CrossRef] [Google Scholar]
  9. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V, Materials Characterization 60 (2009) 96–105. [CrossRef] [Google Scholar]
  10. S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, L. Martinez, R.B. Wicker, Fabrication and characterization of reticulated, porous mesh arrays and foams for aerospace applications by additive manufacturing using electron beam melting, TMS 2010-139th Annual Meeting and Exhibition-Supplemental Proceeding, Seattle, WA, February 14–18, 2010, pp. 283–290. [Google Scholar]
  11. J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBAM), Journal of the Mechanical Behavior of Biomedical Materials 3 (2010) 249–259. [CrossRef] [Google Scholar]
  12. J. Goods, MSFC, private communication, February 2008. [Google Scholar]
  13. J. Schwerdtfeger, P. Heinl, R.F. Singer, C. Körner, Auxetic cellular structures through selective electron-beam melting, Physica Status Solidi B 247 (2010) 269–272. [CrossRef] [Google Scholar]
  14. A. Neira-Arce, Thermal modeling and simulation of electron beam melting for rapid prototyping on Ti6Al4V alloys, Ph.D. Dissertation, North Carolina State University, Raleigh, NC, 2012. [Google Scholar]
  15. W.P. Syam, A.M. Al-Ahmari, M.A. Mannan, H.A. Al-Shehri, K.A. Al-Wazzan, Metallurgical, accuracy and cost analysis of Ti6Al4V dental coping fabricated by electron beam melting process, Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, September 28–October 1, 2011, pp. 375–383. [Google Scholar]
  16. E. Rodriguez, F. Medina, D. Espalin, C. Terrazas, D. Muse, C. Henry, E. MacDonald, R.B. Wicker, Integration of a thermal imaging feedback control system in electron beam melting, WM Keck Center for 3D Innovation, University of Texas at El Paso, pp. 945–961. [Google Scholar]
  17. W. He, W. Jia, H. Lin, H. Tang, X. Kang, H. Yu, Research on preheating of titanium alloy powder in electron beam melting Technology, Rare Metal Materials and Engineering 40 (2011) 2072–2075. [CrossRef] [Google Scholar]
  18. X. Gong, K. Chou, Characterizations of sintered Ti-6Al-4V powders in electron beam additive manufacturing, Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference, Madison, WI, June 10–14, 2013, MSEC 2013-1131. [Google Scholar]
  19. A. Safdar, L.Y. Wei, A. Snis, Z. Lai, Evaluation of microstructural development in electron beam melted Ti-6Al-4V, Materials Characterization 65 (2012) 8–15. [CrossRef] [Google Scholar]
  20. A.A. Antonysamy, J. Meyer, P.B. Prangnell, Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting, Materials Characterization 84 (2013) 153–168. [CrossRef] [Google Scholar]
  21. A. Gulzar, J.I. Akhter, M. Ahmad, G. Ali, M. Mahmood, M. Ajmal, Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting, Applied Surface Science 255 (2009) 8527–8532. [CrossRef] [Google Scholar]
  22. L. Facchini, E. Magalini, P. Robotti, A. Molinari, Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyping Journal 15 (2009) 171–178. [CrossRef] [Google Scholar]
  23. M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic, T. Okabe, Evaluation of titanium alloy fabricated using electron beam melting system for dental applications, Journal of Materials Processing Technology 211 (2011) 1400–1408. [CrossRef] [Google Scholar]
  24. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, S. Collins, Effect of build parameters and build geometries on residual microstructures and mechanical properties of Ti-6Al-4V components built by electron beam melting (EBM), Proceedings of 20th Annual International Solid Freeform Fabrication Proceedings, Austin, TX, August 3–5, 2009, pp. 374–397. [Google Scholar]
  25. S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Materials Science and Engineering A 513–514 (2009) 311–318. [CrossRef] [Google Scholar]
  26. P. Wanjara, M. Brochu, S. Girard, M. Jahazi, Electron beam freeforming on type 321 stainless steel using BNi-2 brazing paste, Materials Science and Technology 21 (2005) 613–618. [CrossRef] [Google Scholar]
  27. P. Heinl, A. Rottmair, C. Körner, R.F. Singer, Cellular titanium by selective electron beam melting, Advanced Engineering Materials 9 (2007) 360–364. [CrossRef] [Google Scholar]
  28. S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Advanced metal powder based manufacturing of complex components by electron beam melting, Materials Technology 24 (2009) 181–190. [Google Scholar]
  29. O. Cansizoglu, O. Harrysson, D. Cormier, H. West, T. Mahale, Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting, Materials Science and Engineering A 492 (2008) 468–474. [CrossRef] [Google Scholar]
  30. J. Schwerdtfeger, P. Heinl, R.F. Singer, C. Körner, Selective electron beam melting: a new way to auxetic cellular structures, Proceedings of 20th Annual International Solid Freeform Fabrication Proceedings, Austin, TX, August 3–5, 2009, pp. 724–729. [Google Scholar]
  31. L.E. Murr, S.M. Gaytan, M.I. Lopez, E. Martinez, F. Medina, R.B. Wicker, Metallographic characterization of additive-layer manufactured products by electron beam melting of Ti-6Al-4V powder, Practical Metallography 46 (2009) 442–453. [CrossRef] [Google Scholar]
  32. K. Puebla, L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V, Materials Sciences and Applications 3 (2012) 259–264. [CrossRef] [Google Scholar]
  33. N. Hrabe, T. Quinn, Effects of processing on microstructure and mechanical properties of Ti-6Al-4V fabricated using electron beam melting (EBM), Part 1: Distance from build plate and part size, Materials Science & Engineering A 573 (2013) 264–270. [CrossRef] [Google Scholar]
  34. M. Svensson, U. Ackelid, Titanium alloys manufactured with electron beam melting mechanical and chemical properties, Medical Device Materials V-Proceedings of the Materials and Processes for Medical Devices Conference, Minneapolis, MN, August 10–12, 2009, pp. 189–194. [Google Scholar]
  35. S.M. Gaytan, L.E. Murr, D.H. Hernandez, E. Martinez, S.A. Quinones, F. Medina, R.B. Wicker, Structure-property-process optimization in the rapid-layer manufacturing of Ti-6A1-4V components by electron beam melting, TMS 2009-138th Annual Meeting and Exhibition, San Francisco, CA, February 15–19, 2009, pp. 363–369. [Google Scholar]
  36. L. Ladani, L. Roy, Mechanical behavior of Ti-6Al-4V manufactured by electron beam additive fabrication, Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference, Madison, WI, June 10–14, 2013, MSEC 2013-1105. [Google Scholar]
  37. X. Li, C. Wang, W. Zhang, Y. Li, Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process, Materials Letters 63 (2009) 403–405. [CrossRef] [Google Scholar]
  38. L.J. Gibson, M.F. Ashby, Cellular solids: structures and properties, Pergamon Press, 1988. [Google Scholar]
  39. P. Heinl, L. Müller, C. Körner, R.F. Singer, F.A. Müller, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomaterialia 4 (2008) 1536–1544. [CrossRef] [Google Scholar]
  40. X. Gong, S.B. Kang, S. Li, J.H. Cho, Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling, Materials and Design 30 (2009) 3345–3350. [CrossRef] [Google Scholar]
  41. X. Gong, H. Li, S.B. Kang, J.H. Cho, S. Li, Microstructure and mechanical properties of twin-roll cast Mg-4.5Al-1.0Zn alloy sheets processed by differential speed rolling, Materials and Design 31 (2010) 1581–1587. [CrossRef] [Google Scholar]
  42. J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti-6Al-4V powder fractions, Journal of Materials Processing Technology 213 (2013) 2109–2118. [CrossRef] [Google Scholar]
  43. W. Liu, L. Li, K. Kochhar, A method for assessing geometrical errors in layered manufacturing. Part 2: Mathematical modeling and numerical evaluation, The International Journal of Advanced Manufacturing Technology 14 (1998) 644–650. [CrossRef] [Google Scholar]
  44. A.L. Cooke, J.A. Soons, Variability in the geometric accuracy of additively manufactured test parts, Proceedings of 21st Annual International Solid Freeform Fabrication Symposium, Austin, TX, August 9–11, 2010, pp. 1–12. [Google Scholar]
  45. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Materialia 58 (2010) 1887–1894. [CrossRef] [Google Scholar]
  46. S. Sabbadini, O. Tassa, P. Gennaro, U.R. Ackelid, Additive manufacturing of gamma titanium aluminide parts by electron beam melting, 2010 TMS Annual Meeting & Exhibition-Global Innovations in Manufacturing of Aerospace Materials: The 11th MPMD Global Innovations Symposium, Seattle, WA, February 14–18, 2010, pp. 267–274. [Google Scholar]
  47. L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, Journal of the Mechanical Behavior of Biomedical Materials 4 (2011) 1396–1411. [CrossRef] [Google Scholar]
  48. S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting, Metallurgical and Materials Transactions A 41 (2010) 3216–3227. [CrossRef] [Google Scholar]
  49. S.H. Sun, Y. Koizumi, S. Kurosu, Y.P. Li, H. Matsumoto, A. Chiba, Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting, Acta Materialia 64 (2014) 154–168. [CrossRef] [Google Scholar]
  50. D.A. Ramirez, L.E. Murr, E. Martinez, D.H. Hernandez, J.L. Martinez, B.I. Machado, F. Medina, P. Frigola, R.B. Wicker, Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting, Acta Materialia 59 (2011) 4088–4099. [CrossRef] [Google Scholar]
  51. L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting, Metallurgical and Materials Transactions A 42 (2011) 3491–3508. [CrossRef] [Google Scholar]
  52. N. Shen, K. Chou, Thermal modeling of electron beam additive manufacturing process – powder sintering effect, ASME International Manufacturing Science and Engineering Conference, Notre Dame, IN, June 4–8, 2012, MSEC 2012-7253. [Google Scholar]
  53. M. Jamshidinia, F. Kong, R. Kovacevic, The coupled CFD-FEM model of electron beam melting (EBM), ASME District F-Early Career Technical Conference, Birmingham, AL, November 2–3, 2013, pp. 163–171. [Google Scholar]
  54. C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes, Journal of Materials Processing Technology 211 (2011) 978–987. [CrossRef] [Google Scholar]
  55. S. Price, J. Lydon, K. Cooper, K. Chou, Experimental temperature analysis of powder-based electron-beam additive manufacturing, 24th Annual International Solid Freeform Fabrication Symposium, Austin, TX, August 12–14, 2013, pp. 162–173. [Google Scholar]
  56. X. Gong, B. Cheng, S. Price, K. Chou, Powder-bed electron-beam-melting additive manufacturing: powder characterization, process simulation and metrology, Early Career Technical Conference, Birmingham, AL, November 2–3, 2013, pp. 55–66. [Google Scholar]
  57. J. Schwerdtfeger, R.F. Singer, C. Körner, In situ flaw detection by IR-imaging during electron beam melting, Rapid Prototyping Journal 18 (2012) 259–263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.