Open Access
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 3
Number of page(s) 8
DOI https://doi.org/10.1051/mfreview/2014002
Published online 05 May 2014
  1. J.L. Movilla, J. Planelles, Off-centering of hydrogenic impurities in quantum dots, Phys. Rev. B 71 (2005) 075319. [CrossRef]
  2. B. Gülveren, Ü. Atav, M. Sahin, M. Tomak, A parabolic quantum dot with N electrons and an impurity, Physica E 30 (2005) 143–149. [CrossRef]
  3. E. Räsänen, J. Könemann, R.J. Puska, M.J. Haug, R.M. Nieminen, Impurity effects in quantum dots: toward quantitative modeling, Phys. Rev. B 70 (2004) 115308. [CrossRef]
  4. M. Aichinger, S.A. Chin, E. Krotscheck, E. Räsänen, Effects of geometry and impurities on quantum rings in magnetic fields, Phys. Rev. B 73 (2006) 195310. [CrossRef]
  5. W. Xie, Binding energy of an off-center hydrogenic donor in a spherical Gaussian quantum dot, Physica B 403 (2008) 2828–2831. [CrossRef]
  6. F.J. Betancur, J. Sierra-Ortega, R.A. Escorcia, J.D. González, I.D. Mikhailov, Density of impurity states in doped spherical quantum dots, Physica E 23 (2004) 102–107. [CrossRef]
  7. F.J. Betancur, I.D. Mikhailov, L.E. Oliveira, Shallow donor states in GaAs − (Ga, Al)As quantum dots with different potential shapes, J. Phys. D: Appl. Phys. 31 (1998) 3391–3396. [CrossRef]
  8. U. Yesilgul, S. Sakiroğlu, E. Kasapoglu, H. Sari, I. Sökmen, Hydrogenic impurities in quantum dots under intense high frequency laser field, Physica B 406 (2011) 1441–1444. [CrossRef]
  9. H. Taş, M. Şahin, The electronic properties of core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity, J. Appl. Phys. 111 (2012) 083702. [CrossRef]
  10. S.-S. Li, J.-B. Xia, Binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot: quantum confinement and Stark effects, J. Appl. Phys. 101 (2007) 093716. [CrossRef]
  11. E. Kasapoglu, H. Sari, I. Sökmen, Density of impurity states of hydrogenic impurities in an inverse parabolic quantum well under the magnetic field, Physica B 392 (2007) 213–216. [CrossRef]
  12. S. Akgŭl, M. Şahin, K. Köksal, A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement, J. Lumin. 132 (2012) 1705–1713. [CrossRef]
  13. R. Khordad, Hydrogenic donor impurity in a cubic quantum dot: effect of position-dependent effective mass, Eur. Phys. J. B 85 (2012) 114. [CrossRef] [EDP Sciences]
  14. M. Cristea, E.C. Niculescu, Hydrogenic impurity states in CdSe/ZnS and ZnS/Cdse core-shell nanodots with dielectric mismatch, Eur. Phys. J. B 85 (2012) 191. [CrossRef] [EDP Sciences]
  15. W. Xie, Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots, Physica B 403 (2008) 4319–4322. [CrossRef]
  16. W. Xie, Impurity effects on optical property of a spherical quantum dot in the presence of an electric field, Physica B 405 (2010) 3436–3440. [CrossRef]
  17. W. Xie, Nonlinear optical properties of a hydrogenic donor quantum dot, Phys. Lett. A 372 (2008) 5498–5500. [CrossRef]
  18. W. Xie, Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential, Superlattices Microstruct. 48 (2010) 239–247. [CrossRef]
  19. A.J. Peter, Polarizabilities of shallow donors in spherical quantum dots with parabolic confinement, Phys. Lett. A 355 (2006) 59–62. [CrossRef]
  20. K.M. Kumar, A.J. Peter, C.W. Lee, Optical properties of a hydrogenic impurity in a confined Zn1-xCdxSe/ZnSe spherical quantum dot, Superlattices Microstruct. 51 (2012) 184–193. [CrossRef]
  21. R. Khordad, Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove GaAs/Ga1-xAlxAs quantum wire, Eur. Phys. J. B 78 (2010) 399–404. [CrossRef] [EDP Sciences]
  22. S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, J. Phys.: Cond. Matter 19 (2007) 395024. [CrossRef]
  23. I. Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity, J. Appl. Phys. 103 (2008) 073512. [CrossRef]
  24. I. Karabulut, S. Baskoutas, Second and third harmonic generation susceptibilities of spherical quantum dots: effects of impurities, electric field and size, J. Comput. Theor. Nanosci. 6 (2009) 153–156. [CrossRef]
  25. B. Çakir, Y. Yakar, A. Özmen, M. Özgür Sezer, M. Şahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct. 47 (2010) 556–566. [CrossRef]
  26. Y. Yakar, B. Çakir, A. Özmen, Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential, Opt. Commun. 283 (2010) 1795–1800. [CrossRef]
  27. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section, J. Lumin. 143 (2013) 304–313. [CrossRef]
  28. S. Baskoutas, E. Paspalakis, A.F. Terzis, Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots, Phys. Rev. B 74 (2006) 153306. [CrossRef]
  29. C. Xia, Z. Zeng, S. Wei, Electric field effects on optical properties in zinc-blende InGaN/GaN quantum dot, J. Lumin. 131 (2011) 623–627. [CrossRef]
  30. M. Şahin, K. Köksal, The linear optical properties of a multi-shell spherical quantum dot of a parabolic confinement for cases with and without a hydrogenic impurity, Semicond. Sci. Technol. 27 (2012) 125011. [CrossRef]
  31. E. Paspalakis, C. Simserides, S. Baskoutas, A.F. Terzis, Electromagnetically induced population transfer between two quantum well subbands, Physica E 40 (2008) 1301–1304. [CrossRef]
  32. E. Paspalakis, A. Kalini, A.F. Terzis, Local field effects in excitonic population transfer in a driven quantum dot system, Phys. Rev. B 73 (2006) 073305. [CrossRef]
  33. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Electron-hole transitions in self-assembled InAs/GaAs quantum dots: effects of applied magnetic fields and hydrostatic pressure, Microelectron. J. 36 (2005) 231–233. [CrossRef]
  34. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots, J. Phys.: Cond. Matter 18 (2006) 1877–1884. [CrossRef]
  35. E. Paspalakis, A.F. Terzis, Proceedings of the 5th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March 12–14, 2006.
  36. H.K. Zhao, Shot noise in the hybrid systems with a quantum dot coupled to normal and superconducting leads, Phys. Lett. A 299 (2002) 262–270. [CrossRef]
  37. N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, S. Amighetti, P. Frigeri, Low frequency noise of GaAs Schottky diodes with embedded InAs quantum layer and self-assembled quantum dots, J. Appl. Phys. 93 (2003) 3990–3994. [CrossRef]
  38. N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, R. Mosca, Investigation of single electron traps induced by InAs quantum dots embedded in GaAs layer using the low-frequency noise technique, J. Appl. Phys. 96 (2004) 5735–5739. [CrossRef]
  39. M. Pioro-Ladriêre, J.H. Davies, A.R. Long, A.S. Sachrajda, L. Gaudreau, P. Zawadzki, J. Lapointe, J. Gupta, Z. Wasilewski, S. Studenikin, Origin of switching noise in GaAs/AlxGa1-xAs lateral gated devices, Phys. Rev. B 72 (2005) 115331. [CrossRef]
  40. P. Yuan, O. Baklenov, H. Nie, A.L. Holmes Jr., B.G. Streetman, J.C. Campbell, High-speed and low-noise, IEEE J. Select. Top. Quantum Electron. 6 (2000) 422–425. [CrossRef]
  41. H.V. Asriyan, F.V. Gasparyan, V.M. Aroutiounian, S.V. Melkonyan, P. Soukiassian, Low-frequency noise in non-homogeneously doped semiconductor, Sens. Actuators A 113 (2004) 338–343. [CrossRef]
  42. Z. Chabola, A. Ibrahim, Noise and scanning by local illumination as reliability estimation for silicon solar cells, Fluc. Noise Lett. 1 (2001) L21–L26. [CrossRef]
  43. J.I. Lee, H.D. Nom, W.J. Choi, B.Y. Yu, J.D. Song, S.C. Hong, S.K. Noh, A. Chovet, Low frequency noise in GaAs structures with embedded In(Ga)As quantum dots, Curr. Appl. Phys. 6 (2006) 1024–1029. [CrossRef]
  44. S. Pal, S.S. Sinha, J. Ganguly, M. Ghosh, Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: interplay with external field, Chem. Phys. 426 (2013) 54–58. [CrossRef]
  45. J.M. Sancho, M.S. Miguel, S.L. Katz, J.D. Gunton, Analytical and numerical studies of multiplicative noise, Phys. Rev. A 26 (1982) 1589–1609. [CrossRef]
  46. L. Jacak, P. Hawrylak, A. Wojos, Quantum Dots, Springer-Verlag, Berlin, 1998. [CrossRef]
  47. T. Chakraborty, Quantum Dots – a survey of the properties of artificial atoms, Elsevier, Amsterdam, 1999.
  48. S. Baskoutas, A.F. Terzis, E. Voutsinas, Binding energy of donor states in a quantum dot with parabolic confinement, J. Comput. Theor. Nanosci. 1 (2004) 317–321. [CrossRef]
  49. V. Halonen, P. Hyvönen, P. Pietiläinen, T. Chakraborty, Effects of scattering centers on the energy spectrum of a quantum dot, Phys. Rev. B 53 (1996) 6971–6974. [CrossRef]
  50. V. Halonen, P. Pietilinen, T. Chakraborty, Optical-absorption spectra of quantum dots and rings with a repulsive scattering centre, Europhys. Lett. 33 (1996) 337–382. [CrossRef]
  51. J. Adamowski, A. Kwaśniowski, B. Szafran, LO-phonon-induced screening of electron-electron interaction in D centres and quantum dots, J. Phys: Cond. Matter 17 (2005) 4489–4500. [CrossRef]
  52. S. Bednarek, B. Szafran, K. Lis, J. Adamowski, Modeling of electronic properties of electrostatic quantum dots, Phys. Rev. B 68 (2003) 155333. [CrossRef]
  53. B. Szafran, S. Bednarek, J. Adamowski, Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots, Phys. Rev. B 64 (2001) 125301. [CrossRef]
  54. A. Gharaati, R. Khordad, A new confinement potential in spherical quantum dots: modified Gaussian potential, Superlattices Microstruct. 48 (2010) 276–287. [CrossRef]
  55. J. García-Ojalvo, J.M. Sancho, Noise in spatially extended systems, Springer, New York, USA, 1999. [CrossRef]
  56. E. Sánchez, M.A. Matías, V. Pérez-Muñuzuri, Analysis of synchronization of chaotic systems by noise: an experimental study, Phys. Rev. E 56 (1997) 4068–4071. [CrossRef]
  57. V. Pérez-Muñuzuri, M.N. Lorenzo, Experimental improvement of chaotic synchronization due to multiplicative time-correlated Gaussian noise, Int. J. Bifurc. Chaos 09 (1999) 2321–2327. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.