Open Access
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 3
Number of page(s) 8
DOI https://doi.org/10.1051/mfreview/2014002
Published online 05 May 2014
  1. J.L. Movilla, J. Planelles, Off-centering of hydrogenic impurities in quantum dots, Phys. Rev. B 71 (2005) 075319. [CrossRef] [Google Scholar]
  2. B. Gülveren, Ü. Atav, M. Sahin, M. Tomak, A parabolic quantum dot with N electrons and an impurity, Physica E 30 (2005) 143–149. [CrossRef] [Google Scholar]
  3. E. Räsänen, J. Könemann, R.J. Puska, M.J. Haug, R.M. Nieminen, Impurity effects in quantum dots: toward quantitative modeling, Phys. Rev. B 70 (2004) 115308. [CrossRef] [Google Scholar]
  4. M. Aichinger, S.A. Chin, E. Krotscheck, E. Räsänen, Effects of geometry and impurities on quantum rings in magnetic fields, Phys. Rev. B 73 (2006) 195310. [CrossRef] [Google Scholar]
  5. W. Xie, Binding energy of an off-center hydrogenic donor in a spherical Gaussian quantum dot, Physica B 403 (2008) 2828–2831. [CrossRef] [Google Scholar]
  6. F.J. Betancur, J. Sierra-Ortega, R.A. Escorcia, J.D. González, I.D. Mikhailov, Density of impurity states in doped spherical quantum dots, Physica E 23 (2004) 102–107. [CrossRef] [Google Scholar]
  7. F.J. Betancur, I.D. Mikhailov, L.E. Oliveira, Shallow donor states in GaAs − (Ga, Al)As quantum dots with different potential shapes, J. Phys. D: Appl. Phys. 31 (1998) 3391–3396. [CrossRef] [Google Scholar]
  8. U. Yesilgul, S. Sakiroğlu, E. Kasapoglu, H. Sari, I. Sökmen, Hydrogenic impurities in quantum dots under intense high frequency laser field, Physica B 406 (2011) 1441–1444. [CrossRef] [Google Scholar]
  9. H. Taş, M. Şahin, The electronic properties of core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity, J. Appl. Phys. 111 (2012) 083702. [CrossRef] [Google Scholar]
  10. S.-S. Li, J.-B. Xia, Binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot: quantum confinement and Stark effects, J. Appl. Phys. 101 (2007) 093716. [CrossRef] [Google Scholar]
  11. E. Kasapoglu, H. Sari, I. Sökmen, Density of impurity states of hydrogenic impurities in an inverse parabolic quantum well under the magnetic field, Physica B 392 (2007) 213–216. [CrossRef] [Google Scholar]
  12. S. Akgŭl, M. Şahin, K. Köksal, A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement, J. Lumin. 132 (2012) 1705–1713. [CrossRef] [Google Scholar]
  13. R. Khordad, Hydrogenic donor impurity in a cubic quantum dot: effect of position-dependent effective mass, Eur. Phys. J. B 85 (2012) 114. [CrossRef] [EDP Sciences] [Google Scholar]
  14. M. Cristea, E.C. Niculescu, Hydrogenic impurity states in CdSe/ZnS and ZnS/Cdse core-shell nanodots with dielectric mismatch, Eur. Phys. J. B 85 (2012) 191. [CrossRef] [EDP Sciences] [Google Scholar]
  15. W. Xie, Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots, Physica B 403 (2008) 4319–4322. [CrossRef] [Google Scholar]
  16. W. Xie, Impurity effects on optical property of a spherical quantum dot in the presence of an electric field, Physica B 405 (2010) 3436–3440. [CrossRef] [Google Scholar]
  17. W. Xie, Nonlinear optical properties of a hydrogenic donor quantum dot, Phys. Lett. A 372 (2008) 5498–5500. [CrossRef] [Google Scholar]
  18. W. Xie, Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential, Superlattices Microstruct. 48 (2010) 239–247. [CrossRef] [Google Scholar]
  19. A.J. Peter, Polarizabilities of shallow donors in spherical quantum dots with parabolic confinement, Phys. Lett. A 355 (2006) 59–62. [CrossRef] [Google Scholar]
  20. K.M. Kumar, A.J. Peter, C.W. Lee, Optical properties of a hydrogenic impurity in a confined Zn1-xCdxSe/ZnSe spherical quantum dot, Superlattices Microstruct. 51 (2012) 184–193. [CrossRef] [Google Scholar]
  21. R. Khordad, Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove GaAs/Ga1-xAlxAs quantum wire, Eur. Phys. J. B 78 (2010) 399–404. [CrossRef] [EDP Sciences] [Google Scholar]
  22. S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, J. Phys.: Cond. Matter 19 (2007) 395024. [CrossRef] [Google Scholar]
  23. I. Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity, J. Appl. Phys. 103 (2008) 073512. [CrossRef] [Google Scholar]
  24. I. Karabulut, S. Baskoutas, Second and third harmonic generation susceptibilities of spherical quantum dots: effects of impurities, electric field and size, J. Comput. Theor. Nanosci. 6 (2009) 153–156. [CrossRef] [Google Scholar]
  25. B. Çakir, Y. Yakar, A. Özmen, M. Özgür Sezer, M. Şahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct. 47 (2010) 556–566. [CrossRef] [Google Scholar]
  26. Y. Yakar, B. Çakir, A. Özmen, Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential, Opt. Commun. 283 (2010) 1795–1800. [CrossRef] [Google Scholar]
  27. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section, J. Lumin. 143 (2013) 304–313. [CrossRef] [Google Scholar]
  28. S. Baskoutas, E. Paspalakis, A.F. Terzis, Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots, Phys. Rev. B 74 (2006) 153306. [CrossRef] [Google Scholar]
  29. C. Xia, Z. Zeng, S. Wei, Electric field effects on optical properties in zinc-blende InGaN/GaN quantum dot, J. Lumin. 131 (2011) 623–627. [CrossRef] [Google Scholar]
  30. M. Şahin, K. Köksal, The linear optical properties of a multi-shell spherical quantum dot of a parabolic confinement for cases with and without a hydrogenic impurity, Semicond. Sci. Technol. 27 (2012) 125011. [CrossRef] [Google Scholar]
  31. E. Paspalakis, C. Simserides, S. Baskoutas, A.F. Terzis, Electromagnetically induced population transfer between two quantum well subbands, Physica E 40 (2008) 1301–1304. [CrossRef] [Google Scholar]
  32. E. Paspalakis, A. Kalini, A.F. Terzis, Local field effects in excitonic population transfer in a driven quantum dot system, Phys. Rev. B 73 (2006) 073305. [CrossRef] [Google Scholar]
  33. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Electron-hole transitions in self-assembled InAs/GaAs quantum dots: effects of applied magnetic fields and hydrostatic pressure, Microelectron. J. 36 (2005) 231–233. [CrossRef] [Google Scholar]
  34. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots, J. Phys.: Cond. Matter 18 (2006) 1877–1884. [CrossRef] [Google Scholar]
  35. E. Paspalakis, A.F. Terzis, Proceedings of the 5th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March 12–14, 2006. [Google Scholar]
  36. H.K. Zhao, Shot noise in the hybrid systems with a quantum dot coupled to normal and superconducting leads, Phys. Lett. A 299 (2002) 262–270. [CrossRef] [Google Scholar]
  37. N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, S. Amighetti, P. Frigeri, Low frequency noise of GaAs Schottky diodes with embedded InAs quantum layer and self-assembled quantum dots, J. Appl. Phys. 93 (2003) 3990–3994. [CrossRef] [Google Scholar]
  38. N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, R. Mosca, Investigation of single electron traps induced by InAs quantum dots embedded in GaAs layer using the low-frequency noise technique, J. Appl. Phys. 96 (2004) 5735–5739. [CrossRef] [Google Scholar]
  39. M. Pioro-Ladriêre, J.H. Davies, A.R. Long, A.S. Sachrajda, L. Gaudreau, P. Zawadzki, J. Lapointe, J. Gupta, Z. Wasilewski, S. Studenikin, Origin of switching noise in GaAs/AlxGa1-xAs lateral gated devices, Phys. Rev. B 72 (2005) 115331. [CrossRef] [Google Scholar]
  40. P. Yuan, O. Baklenov, H. Nie, A.L. Holmes Jr., B.G. Streetman, J.C. Campbell, High-speed and low-noise, IEEE J. Select. Top. Quantum Electron. 6 (2000) 422–425. [CrossRef] [Google Scholar]
  41. H.V. Asriyan, F.V. Gasparyan, V.M. Aroutiounian, S.V. Melkonyan, P. Soukiassian, Low-frequency noise in non-homogeneously doped semiconductor, Sens. Actuators A 113 (2004) 338–343. [CrossRef] [Google Scholar]
  42. Z. Chabola, A. Ibrahim, Noise and scanning by local illumination as reliability estimation for silicon solar cells, Fluc. Noise Lett. 1 (2001) L21–L26. [CrossRef] [Google Scholar]
  43. J.I. Lee, H.D. Nom, W.J. Choi, B.Y. Yu, J.D. Song, S.C. Hong, S.K. Noh, A. Chovet, Low frequency noise in GaAs structures with embedded In(Ga)As quantum dots, Curr. Appl. Phys. 6 (2006) 1024–1029. [CrossRef] [Google Scholar]
  44. S. Pal, S.S. Sinha, J. Ganguly, M. Ghosh, Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: interplay with external field, Chem. Phys. 426 (2013) 54–58. [CrossRef] [Google Scholar]
  45. J.M. Sancho, M.S. Miguel, S.L. Katz, J.D. Gunton, Analytical and numerical studies of multiplicative noise, Phys. Rev. A 26 (1982) 1589–1609. [CrossRef] [Google Scholar]
  46. L. Jacak, P. Hawrylak, A. Wojos, Quantum Dots, Springer-Verlag, Berlin, 1998. [CrossRef] [Google Scholar]
  47. T. Chakraborty, Quantum Dots – a survey of the properties of artificial atoms, Elsevier, Amsterdam, 1999. [Google Scholar]
  48. S. Baskoutas, A.F. Terzis, E. Voutsinas, Binding energy of donor states in a quantum dot with parabolic confinement, J. Comput. Theor. Nanosci. 1 (2004) 317–321. [CrossRef] [Google Scholar]
  49. V. Halonen, P. Hyvönen, P. Pietiläinen, T. Chakraborty, Effects of scattering centers on the energy spectrum of a quantum dot, Phys. Rev. B 53 (1996) 6971–6974. [CrossRef] [Google Scholar]
  50. V. Halonen, P. Pietilinen, T. Chakraborty, Optical-absorption spectra of quantum dots and rings with a repulsive scattering centre, Europhys. Lett. 33 (1996) 337–382. [CrossRef] [EDP Sciences] [Google Scholar]
  51. J. Adamowski, A. Kwaśniowski, B. Szafran, LO-phonon-induced screening of electron-electron interaction in D centres and quantum dots, J. Phys: Cond. Matter 17 (2005) 4489–4500. [CrossRef] [Google Scholar]
  52. S. Bednarek, B. Szafran, K. Lis, J. Adamowski, Modeling of electronic properties of electrostatic quantum dots, Phys. Rev. B 68 (2003) 155333. [CrossRef] [Google Scholar]
  53. B. Szafran, S. Bednarek, J. Adamowski, Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots, Phys. Rev. B 64 (2001) 125301. [CrossRef] [Google Scholar]
  54. A. Gharaati, R. Khordad, A new confinement potential in spherical quantum dots: modified Gaussian potential, Superlattices Microstruct. 48 (2010) 276–287. [CrossRef] [Google Scholar]
  55. J. García-Ojalvo, J.M. Sancho, Noise in spatially extended systems, Springer, New York, USA, 1999. [CrossRef] [Google Scholar]
  56. E. Sánchez, M.A. Matías, V. Pérez-Muñuzuri, Analysis of synchronization of chaotic systems by noise: an experimental study, Phys. Rev. E 56 (1997) 4068–4071. [CrossRef] [Google Scholar]
  57. V. Pérez-Muñuzuri, M.N. Lorenzo, Experimental improvement of chaotic synchronization due to multiplicative time-correlated Gaussian noise, Int. J. Bifurc. Chaos 09 (1999) 2321–2327. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.