Open Access
Review
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 9
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2014007
Published online 12 August 2014
  1. J. Aspacher, Forming hardening concepts, 1st International Conference on Hot Sheet Metal Forming of High Performance Steel, Kassel, Germany, 2008, pp. 77–81. [Google Scholar]
  2. R.R. Boyer, Applications of beta titanium alloys in airframes, Beta Titanium Alloys in the I990’s, Warrendale, PA, TMS, 1993, pp. 335–346. [Google Scholar]
  3. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, Advanced Engineering Materials 5, 6 (2003) 419–427. [Google Scholar]
  4. K. Martchek, Modelling more sustainable aluminium, The International Journal of Life Cycle Assessment 11, 1 (2006) 34–37. [CrossRef] [Google Scholar]
  5. S. Toros, F. Ozturk, I. Kacar, Review of warm forming of aluminum-magnesium alloys, Journal of Materials Processing Technology 207, 1 (2008) 1–12. [CrossRef] [Google Scholar]
  6. T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, Journal of Materials Processing Technology 113, 1 (2001) 648–653. [Google Scholar]
  7. T. Naka, Y. Nakayama, T. Uemori, R. Hino, F. Yoshida, Effects of temperature on yield locus for 5083 aluminum alloy sheet, Journal of Materials Processing Technology 140, 1 (2003) 494–499. [CrossRef] [Google Scholar]
  8. D. Li, A. Ghosh, Tensile deformation behavior of aluminum alloys at warm forming temperatures, Materials Science and Engineering: A 352, 1 (2003) 279–286. [CrossRef] [Google Scholar]
  9. D. Li, A. Ghosh, Biaxial warm forming behavior of aluminum sheet alloys, Journal of Materials Processing Technology 145, 3 (2004) 281–293. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Cavaliere, Hot and warm forming of 2618 aluminium alloy, Journal of Light Metals 2, 4 (2002) 247–252. [CrossRef] [Google Scholar]
  11. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A 213, 1 (1996) 103–114. [Google Scholar]
  12. C. Leyens, M. Peters, Titanium and titanium alloys, Wiley-VCH, Weinheim, 2003. [Google Scholar]
  13. H. Karbasian, A.E. Tekkaya, A review on hot stamping, Journal of Materials Processing Technology 210, 15 (2010) 2103–2118. [Google Scholar]
  14. D. Keith, HSS, AHSS and aluminum jockey for position in the race to cut auto curb weight, American Metal Market Monthly (2010) 1. [Google Scholar]
  15. R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8, 2 (2008) 103–117. [CrossRef] [Google Scholar]
  16. N.P. Lutsey, Review of technical literature and trends related to automobile mass-reduction technology, Institute of Transportation Studies, University of California, Davis, CA, 2010. [Google Scholar]
  17. D. Anderson, New study finds increased use of advanced high-strength steels helps decrease overall vehicle weight, AISI News Release, Detroit, 2009. [Google Scholar]
  18. M. Tolazzi, Hydroforming applications in automotive: a review, International Journal of Material Forming 3, 1 (2010) 307–310. [CrossRef] [Google Scholar]
  19. M. Koç, Hydroforming for advanced manufacturing, Woodhead Publishing, UK, 2008. [Google Scholar]
  20. M. Koç, A. Taylan, An overall review of the tube hydroforming (THF) technology, Journal of Materials Processing Technology 108, 3 (2001) 384–393. [Google Scholar]
  21. M. Ahmetoglu, K. Sutter, X.J. Li, T. Altan, Tube hydroforming: current research, applications and need for training, Journal of Materials Processing Technology 98, 2 (2000) 224–231. [CrossRef] [Google Scholar]
  22. B. Constantine, R. Roth, J.P. Clark, Substituting tube-hydroformed parts for automotive stampings: an economic model, Journal of Modeling 53, 8 (2001) 33–38. [Google Scholar]
  23. L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, K.B. Nielsen, Hydroforming highlights: sheet hydroforming and tube hydroforming, Journal of Materials Processing Technology 151, 1 (2004) 165–177. [CrossRef] [Google Scholar]
  24. M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Annals-Manufacturing Technology 52, 2 (2003) 521–542. [Google Scholar]
  25. P.J. Bolt, N.A.P.M. Lamboo, P.J.C.M. Rozier, Feasibility of warm drawing of aluminium products, Journal of Materials Processing Technology 115, 1 (2001) 118–121. [CrossRef] [Google Scholar]
  26. L.J. Rhoades, M.L. Rhoades, Die forming metallic sheet materials, US Patent No. 5,085,068, 4 Feb. 1992. [Google Scholar]
  27. Z.J. Wang, J.G. Liu, X.Y. Wang, Z.Y. Hu, B. Guo, Viscous pressure forming (VPF): state-of-the-art and future trends, Journal of Materials Processing Technology 151, 1 (2004) 80–87. [CrossRef] [Google Scholar]
  28. Z.J. Wang, Z.R. Wang, H.F. Yang, Experimental investigation for viscous medium drawing of sheet metal under the condition of non-uniform blank holder force, Journal of Plasticity Engineering 6, 2 (1999) 50–52. [Google Scholar]
  29. Z.R. Wang, X.Y. Wang, Z.J. Wang, Numerical simulation and experimental research on the forming of thin-walled complex parts with viscous pressure forming VPF, NUMISHEET, Korea, 2002, pp. 249–252. [Google Scholar]
  30. M. Ahmetoglu, J. Hua, S. Kulukuru, T. Altan, Hydroforming of sheet metal using a viscous pressure medium, Journal of Materials Processing Technology 146, 1 (2004) 97–107. [CrossRef] [Google Scholar]
  31. L.B. Shulkin, R.A. Posteraro, M.A. Ahmetoglu, G.L. Kinzel, T. Altan, Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal, Journal of Materials Processing Technology 98, 1 (2000) 7–16. [CrossRef] [Google Scholar]
  32. X.Y. Wang, J.C. Xia, G.A. Hu, Z.J. Wang, Z.R. Wang, Sheet bulging experiment with a viscous pressure-carrying medium, Journal of Materials Processing Technology 151, 1 (2004) 340–344. [CrossRef] [Google Scholar]
  33. J. Liu, Q. Peng, Y. Liu, Z. Wang, Viscous pressure bulging of aluminum alloy sheet at warm temperatures, Journal of Mechanical Science and Technology 21, 10 (2007) 1505–1511. [CrossRef] [Google Scholar]
  34. C.C. Zhao, G.J. Dong, H. Xiao, Y.S. Wang, New process of solid granule medium forming, Journal of Mechanical Engineering 8 (2009) 046. [Google Scholar]
  35. G.J. Dong, C.C. Zhao, M.Y. Cao, Flexible-die forming process with solid granule medium on sheet metal, Transactions of Nonferrous Metals Society of China 23, 9 (2013) 2666–2677. [CrossRef] [Google Scholar]
  36. M.Y. Cao, C.C. Zhao, G.J. Dong, Numerical simulation on granules medium drawing process parameters of magnesium alloy sheet, The Chinese Journal of Nonferrous Metals 22, 11 (2012) 2992–2999. [Google Scholar]
  37. M. Grüner, M. Merklein, Numerical simulation of hydro forming at elevated temperatures with granular material used as medium compared to the real part geometry, International Journal of Material Forming 3, 1 (2010) 279–282. [CrossRef] [Google Scholar]
  38. M. Grünerak, M. Merklein, Influences on the molding in hydroforming using granular material as a medium, AIP Conference Proceedings 1383 (2011) 645–652. [Google Scholar]
  39. J. Bonet, A. Gil, R.D. Wood, R. Said, R.V. Curtis, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering 195, 48 (2006) 6580–6603. [Google Scholar]
  40. G.J. Davies, J.W. Edington, C.P. Cutler, K.A. Padmanabhan, Superplasticity: a review, Journal of Materials Science 5, 12 (1970) 1091–1102. [CrossRef] [Google Scholar]
  41. W.A. Backofen, I.R. Turner, D.H. Avery, Superplasticity in an Al-Zn alloy, Transactions of ASM 57, 4 (1964) 980–990. [Google Scholar]
  42. J. Bonet, A. Gil, R.D. Wood, R. Said, R.V. Curtis, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering 195, 48 (2006) 6580–6603. [Google Scholar]
  43. A.J. Barnes, Superplastic forming 40 years and still growing, Journal of Materials Engineering and Performance 16, 4 (2007) 440–454. [CrossRef] [Google Scholar]
  44. L.D. Hefti, Commercial airplane applications of superplastically formed AA5083 aluminum sheet, Journal of Materials Engineering and Performance 16, 2 (2007) 136–141. [CrossRef] [Google Scholar]
  45. L.D. Hefti, Using superplastic forming as a means of achieving cost benefits as well as enhancing aircraft performance, High Performance Metallic Materials for Cost Sensitive Applications, John Wiley and Sons, Hoboken, NJ, 2002 pp. 64–72. [Google Scholar]
  46. R. Martin, D. Evans, Reducing costs in aircraft: the metals affordability initiative consortium, Journal of Modeling 52, 3 (2000) 24–28. [Google Scholar]
  47. A.J. Barnes, Superplastic aluminum forming-expanding its techno-economic niche, Materials Science Forum 304 (1999) 785–796. [CrossRef] [Google Scholar]
  48. J. Wittenauer, T.G. Nieh, J. Wadsworth, A first report on superplastic gas-pressure forming of ceramic sheet, Scripta Metallurgica et Materialia 26, 4 (1992) 551–556. [CrossRef] [Google Scholar]
  49. T. Waniuk, J. Schroers, W.L. Johnson, Timescales of crystallization and viscous flow of the bulk glass-forming Zr-Ti-Ni-Cu-Be alloys, Physical Review B 67, 18 (2003) 184203. [CrossRef] [Google Scholar]
  50. L.H. Lang, S.H. Wang, C.L. Yang, Investigation on the innovative impact hydroforming technology, The 11th International Conference on Numerical Methods in Industrial Forming Processes: NUMIFORM 2013 1532, 1 (2013) 791–798. [Google Scholar]
  51. H. Tominga, M. Takamatsu, Hydropunch, a pneumatic-hydraulic-forming machine, International Conference of the Center for High Energy Forming, Estes Park, USA, 1969. [Google Scholar]
  52. B. Mason, Sheet metal forming for small batches, Bachelor thesis, University of Nottingham, May 1978. [Google Scholar]
  53. W.C. Emmens, G. Sebastiani, A.H.V.D. Boogaard, The technology of incremental sheet forming – a brief review of the history, Journal of Materials Processing Technology 210, 8 (2010) 981–997. [Google Scholar]
  54. B.T. Araghi, A. Göttmann, M. Bambach, G. Hirt, G. Bergweiler, J. Diettrich, M. Steiners, A. Saeed-Akbari, Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production, Production Engineering 5, 4 (2011) 393–404. [CrossRef] [Google Scholar]
  55. M. Bambach, G. Hirt, S. Junk, Modelling and experimental evaluation of the incremental CNC sheet metal forming process, 7th International Conference on Computational Plasticity, Barcelona, Spain, 2003. [Google Scholar]
  56. T.J. Kim, D.Y. Yang, Improvement of formability for the incremental sheet metal forming process, International Journal of Mechanical Sciences 42, 7 (2000) 1271–1286. [CrossRef] [Google Scholar]
  57. D. Leach, A.J. Green, A.N. Bramley, A new incremental sheet forming process for small batch and prototype parts, 9th International Conference on Sheet Metal, Leuven, 2001. [Google Scholar]
  58. L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Annals-Manufacturing Technology 51, 1 (2002) 199–202. [CrossRef] [Google Scholar]
  59. S. Matsubara, Incremental backward bulge forming of a sheet metal with a hemispherical head tool-a study of a numerical control forming system II, Journal-Japan Society for Technology of Plasticity 35 (1994) 1311–1311. [Google Scholar]
  60. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP Annals-Manufacturing Technology 54, 2 (2005) 88–114. [Google Scholar]
  61. J. Jeswiet, E. Hagan, Rapid prototyping of a headlight with sheet metal, Canadian Institute of Mining, Metallurgy and Petroleum, Canada, 2001, pp. 109–114. [Google Scholar]
  62. F. Micari, Single point incremental forming: recent results, Seminar on Incremental Forming, Cambridge University, Cambridge, 22 October, 2004. [Google Scholar]
  63. P.D. Wu, J.D. Embury, D.J. Lloyd, Y. Huang, K.W. Neale, Effects of superimposed hydrostatic pressure on sheet metal formability, International Journal of Plasticity 25, 9 (2009) 1711–1725. [CrossRef] [Google Scholar]
  64. F. Fuchs, Hydrostatic pressure – its role in metal forming, Mechanical Engineering 88, 4 (1966) 34–40. [Google Scholar]
  65. X.L. Cui, X.S. Wang, S.J. Yuan, Deformation analysis of double-sided tube hydroforming in square-section die, Journal of Materials Processing Technology 214, 7 (2014) 1341–1351. [CrossRef] [Google Scholar]
  66. J.G. Liu, Z.J. Wang, Q.Y. Meng, Numerical investigations on the influence of superimposed double-sided pressure on the formability of biaxially stretched AA6111-T4 sheet metal, Journal of Materials Engineering and Performance 21, 4 (2012) 429–436. [CrossRef] [Google Scholar]
  67. A. Assempour, H.K. Nejadkhaki, R. Hashemi, Forming limit diagrams with the existence of through-thickness normal stress, Computational Materials Science 48, 3 (2010) 504–508. [CrossRef] [Google Scholar]
  68. J.F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technology 141, 3 (2003) 439–446. [CrossRef] [Google Scholar]
  69. T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, 2005. [Google Scholar]
  70. M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Deformation mechanisms in superplastic AA5083 materials, Metallurgical and Materials Transactions A 36, 5 (2005) 1249–1261. [CrossRef] [Google Scholar]
  71. M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Failure mechanisms in superplastic AA5083 materials, Metallurgical and Materials Transactions A 37, 3 (2006) 645–655. [CrossRef] [Google Scholar]
  72. L. Li, X. Zhang, Y. Deng, C. Tang, Superplasticity and microstructure in Mg-Gd-Y-Zr rolled sheet, Journal of Alloys and Compounds 485, 1 (2009) 295–299. [CrossRef] [Google Scholar]
  73. K. Jackson, J. Allwood, The mechanics of incremental sheet forming, Journal of Materials Processing Technology 209, 3 (2009) 1158–1174. [Google Scholar]
  74. S. Kalpakcioglu, On the mechanics of shear spinning, Journal of Engineering for Industry 83, 2 (1961) 125–130. [CrossRef] [Google Scholar]
  75. M.B. Silva, P.S. Nielsen, N. Bay, P.A.F. Martins, Failure mechanisms in single-point incremental forming of metals, The International Journal of Advanced Manufacturing Technology 56, 9–12 (2011) 893–903. [CrossRef] [Google Scholar]
  76. J. Jeswiet, D. Young, Forming limit diagrams for single-point incremental forming of aluminium sheet, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219, 4 (2005) 359–364. [CrossRef] [Google Scholar]
  77. L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Annals-Manufacturing Technology 51, 1 (2002) 199–202. [CrossRef] [Google Scholar]
  78. E. Hagan, J. Jeswiet, Analysis of surface roughness for parts formed by computer numerical controlled incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218, 10 (2004) 1307–1312. [CrossRef] [Google Scholar]
  79. S. Junk, G. Hirt, I. Chouvalova, Forming strategies and tools in incremental sheet forming, Proceedings of the 10th International Conference on Sheet Metal, Belfast, 2003. [Google Scholar]
  80. O. Lasunon, W.A. Knight, Comparative investigation of single-point and double-point incremental sheet metal forming processes, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 221, 12 (2007) 1725–1732. [CrossRef] [Google Scholar]
  81. S. Junk, G. Hirt, I. Chouvalova, Forming strategies and process modelling for CNC incremental sheet forming, CIRP Annals-Manufacturing Technology 53, 1 (2004) 203–206. [CrossRef] [Google Scholar]
  82. H. Meier, V. Smukala, O. Dewald, J. Zhang, Two point incremental forming with two moving forming tools, Key Engineering Materials 344 (2007) 599–605. [CrossRef] [Google Scholar]
  83. J.R. Duflou, B. Callebaut, J. Verbert, H.D. Baerdemaeker, Improved SPIF performance through dynamic local heating, International Journal of Machine Tools and Manufacture 48, 5 (2008) 543–549. [CrossRef] [Google Scholar]
  84. H.Y. Wu, C.H. Chiu, J.Y. Wang, S. Lee, Effect of lubrication on deformation characteristics of a superplastic 5083 Al alloy during bi-axial deformation, Materials Science and Engineering: A 427, 1 (2006) 268–273. [CrossRef] [Google Scholar]
  85. M. Serenelli, M. Bertinetti, P. Turner, J. Signorelli, A theoretical study on forming limit diagram predictions using viscoplastic polycrystalline plasticity models, Key Engineering Materials 473 (2011) 327–334. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.