Open Access
Review
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 9
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2014007
Published online 12 August 2014
  1. J. Aspacher, Forming hardening concepts, 1st International Conference on Hot Sheet Metal Forming of High Performance Steel, Kassel, Germany, 2008, pp. 77–81.
  2. R.R. Boyer, Applications of beta titanium alloys in airframes, Beta Titanium Alloys in the I990’s, Warrendale, PA, TMS, 1993, pp. 335–346.
  3. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, Advanced Engineering Materials 5, 6 (2003) 419–427. [CrossRef]
  4. K. Martchek, Modelling more sustainable aluminium, The International Journal of Life Cycle Assessment 11, 1 (2006) 34–37. [CrossRef]
  5. S. Toros, F. Ozturk, I. Kacar, Review of warm forming of aluminum-magnesium alloys, Journal of Materials Processing Technology 207, 1 (2008) 1–12. [CrossRef]
  6. T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, Journal of Materials Processing Technology 113, 1 (2001) 648–653. [CrossRef]
  7. T. Naka, Y. Nakayama, T. Uemori, R. Hino, F. Yoshida, Effects of temperature on yield locus for 5083 aluminum alloy sheet, Journal of Materials Processing Technology 140, 1 (2003) 494–499. [CrossRef]
  8. D. Li, A. Ghosh, Tensile deformation behavior of aluminum alloys at warm forming temperatures, Materials Science and Engineering: A 352, 1 (2003) 279–286. [CrossRef]
  9. D. Li, A. Ghosh, Biaxial warm forming behavior of aluminum sheet alloys, Journal of Materials Processing Technology 145, 3 (2004) 281–293. [CrossRef] [MathSciNet]
  10. P. Cavaliere, Hot and warm forming of 2618 aluminium alloy, Journal of Light Metals 2, 4 (2002) 247–252. [CrossRef]
  11. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A 213, 1 (1996) 103–114. [CrossRef]
  12. C. Leyens, M. Peters, Titanium and titanium alloys, Wiley-VCH, Weinheim, 2003. [CrossRef]
  13. H. Karbasian, A.E. Tekkaya, A review on hot stamping, Journal of Materials Processing Technology 210, 15 (2010) 2103–2118. [CrossRef]
  14. D. Keith, HSS, AHSS and aluminum jockey for position in the race to cut auto curb weight, American Metal Market Monthly (2010) 1.
  15. R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8, 2 (2008) 103–117. [CrossRef]
  16. N.P. Lutsey, Review of technical literature and trends related to automobile mass-reduction technology, Institute of Transportation Studies, University of California, Davis, CA, 2010.
  17. D. Anderson, New study finds increased use of advanced high-strength steels helps decrease overall vehicle weight, AISI News Release, Detroit, 2009. [CrossRef]
  18. M. Tolazzi, Hydroforming applications in automotive: a review, International Journal of Material Forming 3, 1 (2010) 307–310. [CrossRef]
  19. M. Koç, Hydroforming for advanced manufacturing, Woodhead Publishing, UK, 2008.
  20. M. Koç, A. Taylan, An overall review of the tube hydroforming (THF) technology, Journal of Materials Processing Technology 108, 3 (2001) 384–393. [CrossRef]
  21. M. Ahmetoglu, K. Sutter, X.J. Li, T. Altan, Tube hydroforming: current research, applications and need for training, Journal of Materials Processing Technology 98, 2 (2000) 224–231. [CrossRef]
  22. B. Constantine, R. Roth, J.P. Clark, Substituting tube-hydroformed parts for automotive stampings: an economic model, Journal of Modeling 53, 8 (2001) 33–38.
  23. L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, K.B. Nielsen, Hydroforming highlights: sheet hydroforming and tube hydroforming, Journal of Materials Processing Technology 151, 1 (2004) 165–177. [CrossRef]
  24. M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Annals-Manufacturing Technology 52, 2 (2003) 521–542. [CrossRef]
  25. P.J. Bolt, N.A.P.M. Lamboo, P.J.C.M. Rozier, Feasibility of warm drawing of aluminium products, Journal of Materials Processing Technology 115, 1 (2001) 118–121. [CrossRef]
  26. L.J. Rhoades, M.L. Rhoades, Die forming metallic sheet materials, US Patent No. 5,085,068, 4 Feb. 1992.
  27. Z.J. Wang, J.G. Liu, X.Y. Wang, Z.Y. Hu, B. Guo, Viscous pressure forming (VPF): state-of-the-art and future trends, Journal of Materials Processing Technology 151, 1 (2004) 80–87. [CrossRef]
  28. Z.J. Wang, Z.R. Wang, H.F. Yang, Experimental investigation for viscous medium drawing of sheet metal under the condition of non-uniform blank holder force, Journal of Plasticity Engineering 6, 2 (1999) 50–52.
  29. Z.R. Wang, X.Y. Wang, Z.J. Wang, Numerical simulation and experimental research on the forming of thin-walled complex parts with viscous pressure forming VPF, NUMISHEET, Korea, 2002, pp. 249–252.
  30. M. Ahmetoglu, J. Hua, S. Kulukuru, T. Altan, Hydroforming of sheet metal using a viscous pressure medium, Journal of Materials Processing Technology 146, 1 (2004) 97–107. [CrossRef]
  31. L.B. Shulkin, R.A. Posteraro, M.A. Ahmetoglu, G.L. Kinzel, T. Altan, Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal, Journal of Materials Processing Technology 98, 1 (2000) 7–16. [CrossRef]
  32. X.Y. Wang, J.C. Xia, G.A. Hu, Z.J. Wang, Z.R. Wang, Sheet bulging experiment with a viscous pressure-carrying medium, Journal of Materials Processing Technology 151, 1 (2004) 340–344. [CrossRef]
  33. J. Liu, Q. Peng, Y. Liu, Z. Wang, Viscous pressure bulging of aluminum alloy sheet at warm temperatures, Journal of Mechanical Science and Technology 21, 10 (2007) 1505–1511. [CrossRef]
  34. C.C. Zhao, G.J. Dong, H. Xiao, Y.S. Wang, New process of solid granule medium forming, Journal of Mechanical Engineering 8 (2009) 046.
  35. G.J. Dong, C.C. Zhao, M.Y. Cao, Flexible-die forming process with solid granule medium on sheet metal, Transactions of Nonferrous Metals Society of China 23, 9 (2013) 2666–2677. [CrossRef]
  36. M.Y. Cao, C.C. Zhao, G.J. Dong, Numerical simulation on granules medium drawing process parameters of magnesium alloy sheet, The Chinese Journal of Nonferrous Metals 22, 11 (2012) 2992–2999.
  37. M. Grüner, M. Merklein, Numerical simulation of hydro forming at elevated temperatures with granular material used as medium compared to the real part geometry, International Journal of Material Forming 3, 1 (2010) 279–282. [CrossRef]
  38. M. Grünerak, M. Merklein, Influences on the molding in hydroforming using granular material as a medium, AIP Conference Proceedings 1383 (2011) 645–652.
  39. J. Bonet, A. Gil, R.D. Wood, R. Said, R.V. Curtis, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering 195, 48 (2006) 6580–6603. [CrossRef] [MathSciNet]
  40. G.J. Davies, J.W. Edington, C.P. Cutler, K.A. Padmanabhan, Superplasticity: a review, Journal of Materials Science 5, 12 (1970) 1091–1102. [CrossRef]
  41. W.A. Backofen, I.R. Turner, D.H. Avery, Superplasticity in an Al-Zn alloy, Transactions of ASM 57, 4 (1964) 980–990.
  42. J. Bonet, A. Gil, R.D. Wood, R. Said, R.V. Curtis, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering 195, 48 (2006) 6580–6603. [CrossRef] [MathSciNet]
  43. A.J. Barnes, Superplastic forming 40 years and still growing, Journal of Materials Engineering and Performance 16, 4 (2007) 440–454. [CrossRef]
  44. L.D. Hefti, Commercial airplane applications of superplastically formed AA5083 aluminum sheet, Journal of Materials Engineering and Performance 16, 2 (2007) 136–141. [CrossRef]
  45. L.D. Hefti, Using superplastic forming as a means of achieving cost benefits as well as enhancing aircraft performance, High Performance Metallic Materials for Cost Sensitive Applications, John Wiley and Sons, Hoboken, NJ, 2002 pp. 64–72.
  46. R. Martin, D. Evans, Reducing costs in aircraft: the metals affordability initiative consortium, Journal of Modeling 52, 3 (2000) 24–28.
  47. A.J. Barnes, Superplastic aluminum forming-expanding its techno-economic niche, Materials Science Forum 304 (1999) 785–796. [CrossRef]
  48. J. Wittenauer, T.G. Nieh, J. Wadsworth, A first report on superplastic gas-pressure forming of ceramic sheet, Scripta Metallurgica et Materialia 26, 4 (1992) 551–556. [CrossRef]
  49. T. Waniuk, J. Schroers, W.L. Johnson, Timescales of crystallization and viscous flow of the bulk glass-forming Zr-Ti-Ni-Cu-Be alloys, Physical Review B 67, 18 (2003) 184203. [CrossRef]
  50. L.H. Lang, S.H. Wang, C.L. Yang, Investigation on the innovative impact hydroforming technology, The 11th International Conference on Numerical Methods in Industrial Forming Processes: NUMIFORM 2013 1532, 1 (2013) 791–798.
  51. H. Tominga, M. Takamatsu, Hydropunch, a pneumatic-hydraulic-forming machine, International Conference of the Center for High Energy Forming, Estes Park, USA, 1969.
  52. B. Mason, Sheet metal forming for small batches, Bachelor thesis, University of Nottingham, May 1978.
  53. W.C. Emmens, G. Sebastiani, A.H.V.D. Boogaard, The technology of incremental sheet forming – a brief review of the history, Journal of Materials Processing Technology 210, 8 (2010) 981–997. [CrossRef]
  54. B.T. Araghi, A. Göttmann, M. Bambach, G. Hirt, G. Bergweiler, J. Diettrich, M. Steiners, A. Saeed-Akbari, Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production, Production Engineering 5, 4 (2011) 393–404. [CrossRef]
  55. M. Bambach, G. Hirt, S. Junk, Modelling and experimental evaluation of the incremental CNC sheet metal forming process, 7th International Conference on Computational Plasticity, Barcelona, Spain, 2003.
  56. T.J. Kim, D.Y. Yang, Improvement of formability for the incremental sheet metal forming process, International Journal of Mechanical Sciences 42, 7 (2000) 1271–1286. [CrossRef]
  57. D. Leach, A.J. Green, A.N. Bramley, A new incremental sheet forming process for small batch and prototype parts, 9th International Conference on Sheet Metal, Leuven, 2001.
  58. L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Annals-Manufacturing Technology 51, 1 (2002) 199–202. [CrossRef]
  59. S. Matsubara, Incremental backward bulge forming of a sheet metal with a hemispherical head tool-a study of a numerical control forming system II, Journal-Japan Society for Technology of Plasticity 35 (1994) 1311–1311.
  60. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP Annals-Manufacturing Technology 54, 2 (2005) 88–114. [CrossRef]
  61. J. Jeswiet, E. Hagan, Rapid prototyping of a headlight with sheet metal, Canadian Institute of Mining, Metallurgy and Petroleum, Canada, 2001, pp. 109–114.
  62. F. Micari, Single point incremental forming: recent results, Seminar on Incremental Forming, Cambridge University, Cambridge, 22 October, 2004.
  63. P.D. Wu, J.D. Embury, D.J. Lloyd, Y. Huang, K.W. Neale, Effects of superimposed hydrostatic pressure on sheet metal formability, International Journal of Plasticity 25, 9 (2009) 1711–1725. [CrossRef]
  64. F. Fuchs, Hydrostatic pressure – its role in metal forming, Mechanical Engineering 88, 4 (1966) 34–40.
  65. X.L. Cui, X.S. Wang, S.J. Yuan, Deformation analysis of double-sided tube hydroforming in square-section die, Journal of Materials Processing Technology 214, 7 (2014) 1341–1351. [CrossRef]
  66. J.G. Liu, Z.J. Wang, Q.Y. Meng, Numerical investigations on the influence of superimposed double-sided pressure on the formability of biaxially stretched AA6111-T4 sheet metal, Journal of Materials Engineering and Performance 21, 4 (2012) 429–436. [CrossRef]
  67. A. Assempour, H.K. Nejadkhaki, R. Hashemi, Forming limit diagrams with the existence of through-thickness normal stress, Computational Materials Science 48, 3 (2010) 504–508. [CrossRef]
  68. J.F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technology 141, 3 (2003) 439–446. [CrossRef]
  69. T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, 2005.
  70. M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Deformation mechanisms in superplastic AA5083 materials, Metallurgical and Materials Transactions A 36, 5 (2005) 1249–1261. [CrossRef]
  71. M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Failure mechanisms in superplastic AA5083 materials, Metallurgical and Materials Transactions A 37, 3 (2006) 645–655. [CrossRef]
  72. L. Li, X. Zhang, Y. Deng, C. Tang, Superplasticity and microstructure in Mg-Gd-Y-Zr rolled sheet, Journal of Alloys and Compounds 485, 1 (2009) 295–299. [CrossRef]
  73. K. Jackson, J. Allwood, The mechanics of incremental sheet forming, Journal of Materials Processing Technology 209, 3 (2009) 1158–1174. [CrossRef]
  74. S. Kalpakcioglu, On the mechanics of shear spinning, Journal of Engineering for Industry 83, 2 (1961) 125–130. [CrossRef]
  75. M.B. Silva, P.S. Nielsen, N. Bay, P.A.F. Martins, Failure mechanisms in single-point incremental forming of metals, The International Journal of Advanced Manufacturing Technology 56, 9–12 (2011) 893–903. [CrossRef]
  76. J. Jeswiet, D. Young, Forming limit diagrams for single-point incremental forming of aluminium sheet, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219, 4 (2005) 359–364. [CrossRef]
  77. L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Annals-Manufacturing Technology 51, 1 (2002) 199–202. [CrossRef]
  78. E. Hagan, J. Jeswiet, Analysis of surface roughness for parts formed by computer numerical controlled incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218, 10 (2004) 1307–1312. [CrossRef]
  79. S. Junk, G. Hirt, I. Chouvalova, Forming strategies and tools in incremental sheet forming, Proceedings of the 10th International Conference on Sheet Metal, Belfast, 2003.
  80. O. Lasunon, W.A. Knight, Comparative investigation of single-point and double-point incremental sheet metal forming processes, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 221, 12 (2007) 1725–1732. [CrossRef]
  81. S. Junk, G. Hirt, I. Chouvalova, Forming strategies and process modelling for CNC incremental sheet forming, CIRP Annals-Manufacturing Technology 53, 1 (2004) 203–206. [CrossRef]
  82. H. Meier, V. Smukala, O. Dewald, J. Zhang, Two point incremental forming with two moving forming tools, Key Engineering Materials 344 (2007) 599–605. [CrossRef]
  83. J.R. Duflou, B. Callebaut, J. Verbert, H.D. Baerdemaeker, Improved SPIF performance through dynamic local heating, International Journal of Machine Tools and Manufacture 48, 5 (2008) 543–549. [CrossRef]
  84. H.Y. Wu, C.H. Chiu, J.Y. Wang, S. Lee, Effect of lubrication on deformation characteristics of a superplastic 5083 Al alloy during bi-axial deformation, Materials Science and Engineering: A 427, 1 (2006) 268–273. [CrossRef]
  85. M. Serenelli, M. Bertinetti, P. Turner, J. Signorelli, A theoretical study on forming limit diagram predictions using viscoplastic polycrystalline plasticity models, Key Engineering Materials 473 (2011) 327–334. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.