Open Access
Manufacturing Rev.
Volume 3, 2016
Article Number 19
Number of page(s) 9
Published online 20 December 2016
  1. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev. 108 (2008) 2646. [CrossRef]
  2. A. Antenucci, S. Guarino, V. Tagliaferri, N. Ucciardello, Improvement of the mechanical and thermal characteristics of open cell aluminum foams by the electrodeposition of Cu, Mater. Des. 59 (2013) 124–129. [CrossRef]
  3. A. Antenucci, S. Guarino, V. Tagliaferri, N. Ucciardello, Electro-deposition of graphene on aluminium open cell metal foams, Mater. Des. 71 (2015) 78–84. [CrossRef]
  4. C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites, Chem. Commun. 7 (2005) 829–841. [CrossRef]
  5. D. Chen, Q. Wang, J. Jin, P. Wu, H. Wang, S. Yu, H. Zhang, C.X. Cai, Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes, Anal. Chem. 52 (2010) 2448. [CrossRef]
  6. L.N. Wu, X.J. Zhang, H.X. Ju, Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential, Anal. Chem. 79 (2007) 453. [CrossRef]
  7. M. Zhou, J. Ding, L.P. Guo, Q.K. Shang, Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode, Anal. Chem. 79 (2007) 5328. [CrossRef]
  8. M. Zhou, J.D. Guo, L.P. Guo, J. Bai, Electrochemical sensing platform based on the highly ordered mosoporous carbon-fullerene system, Anal. Chem. 80 (2008) 4642. [CrossRef]
  9. H. Yaojuan, J. Juan, W. Ping, Z. Hui, C. Chenxin, Graphene – gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation, Electrochimica Acta 56 (2010) 491–500. [CrossRef]
  10. P.G. Klemens, Theory of the A-plane thermal conductivity of graphite, J. Wide Bandgap Mater. 7 (2000) 332–339. [CrossRef]
  11. H.O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, Noyes Publications, Park Ridge, NJ, 2010.
  12. C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements: a comprehensive review, J. Phys. Chem. Ref. Data 3 (1974) 1–30. [CrossRef]
  13. A.A. Balandin et al., Superior thermal conductivity of single layer graphene, Nano Lett. 8 (2008) 902–907. [CrossRef] [PubMed]
  14. S. Ghosh et al., Extremely high thermal conductivity in graphene: prospects for thermal management application in nanoelectronic circuits, Appl. Phys. Lett. 92 (2008) 151911. [CrossRef]
  15. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers, Nano Lett. 7 (2007) 2645–2649. [CrossRef]
  16. S. Ghosh et al., Thermal properties of polycrystalline graphene films and reduced graphene-oxide films, MRS Proc. 2 (2010) 198.
  17. K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. [CrossRef] [PubMed]
  18. K.P. Loh, Q. Bao, P.K. Ang, J.X. Yang, The chemistry of graphene, Mater. Chem. 20 (2010) 1. [CrossRef]
  19. D. Wei, Y. Liu, H. Zhang, L. Huang, B. Wu, J. Chen, G. Yu, Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches, J. Am. Chem. Soc. 131 (2009) 11147. [CrossRef] [PubMed]
  20. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498. [CrossRef] [PubMed]
  21. K. Kim, H.J. Park, B.C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Electric property evolution of structurally defected multilayer graphene, Nano Lett. 8 (2008) 3092. [CrossRef]
  22. C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385. [CrossRef] [PubMed]
  23. C. Xu, X. Wang, J.W. Zhu, Graphene-metal particle nanocomposites, J. Phys. Chem. 112 (2008) 19841.
  24. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano 3 (2009) 907. [CrossRef]
  25. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors, J. Chem. Sci. 120 (2008) 9. [CrossRef]
  26. Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors, Nano Lett. 9 (2009) 2973. [CrossRef]
  27. Y.J. Hu, J. Jin, H. Zhang, P. Wu, C.X. Cai, Graphene: synthesis, functionalization and applications in chemistry, Acta Phys.: Chim. Sin. 26 (2010) 2073.
  28. S. Stankovich et al., Graphene-based composite materials, Nature 442 (2006) 282. [CrossRef] [PubMed]
  29. C. Mattevi, H. Kima, M. Chhowalla, A review of chemical vapor deposition of graphene on copper, J. Mater. Chem. 21 (2011) 3324–3334. [CrossRef]
  30. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2009) 30–35. [CrossRef] [PubMed]
  31. O. Frank, M. Kalbac, Chemical vapor deposition (CVD) growth of graphene films, in: V. Skakalova, A. Kaiser (Eds.), Graphene, Woodhead Publishing, 2014, pp. 27–49. [CrossRef]
  32. L.A. Razak, D. Tobino, K. Ueno, Improvement of multilayer graphene quality by current stress during thermal CVD, Microelectron. Eng. 120 (2014) 200–204. [CrossRef]
  33. J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates, ACS Nano 5 (2011) 6916–6924. [CrossRef] [PubMed]
  34. K. Boomsma, D. Poulikakos, F. Zwick, Metal foams as compact high performance heat exchangers, Mech. Mater. 35 (2003) 1161–1176. [CrossRef]
  35. W.J. Parker, R.J. Jenkins et al., A flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, U.S. Navy Report USNRDL-TR-424, 1960.
  36. P.G. Klemens, D.F. Pedraza, Thermal conductivity of graphite in basal plane, Carbon 32 (1994) 735–741. [CrossRef]
  37. P.G. Klemens, Theory of thermal conduction in the ceramic films, Int. J. Thermophys. 22 (2001) 265–275. [CrossRef]
  38. L.A. Jauregui et al., Thermal transport in graphene nanostructures: experiments and simulations, ECS Trans. 28 (2010) 73–83. [CrossRef]
  39. P.L. Kapitza, Collected Papers of P. L. Kapitza Vol. II, in: D. ter Haar (Ed.), Pergamon Press, Oxford, 1967, p. 581
  40. Y.K. Koh, M.H. Bae, D.G. Cahill, E. Pop, Heat conduction across monolayer and few-layer graphenes, Nano Lett. 10 (2010) 4363–4368. [CrossRef]
  41. A.J. Schmidt, K.C. Collins, A.J. Minnich, G. Chen, Thermal conductance and phonon transmissivity of metal-graphite interfaces, J. Appl. Phys. 107 (2010) 1–5.
  42. M.A. Raza, A. Westwood, A. Brown, N. Hondow, C. Stirling, Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications, Carbon 49 (2011) 4269–4279. [CrossRef]
  43. S. Ghosh et al., Dimensional crossover of thermal transport in few-layer graphene, Nature Mater. 9 (2010) 555–558. [CrossRef] [PubMed]
  44. W.R. Zhong, M.P. Zhang, B.Q. Ai, D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study, Appl. Phys. Lett. 98 (2011) 113107. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.