Open Access
Manufacturing Rev.
Volume 3, 2016
Article Number 19
Number of page(s) 9
Published online 20 December 2016
  1. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev. 108 (2008) 2646. [CrossRef] [Google Scholar]
  2. A. Antenucci, S. Guarino, V. Tagliaferri, N. Ucciardello, Improvement of the mechanical and thermal characteristics of open cell aluminum foams by the electrodeposition of Cu, Mater. Des. 59 (2013) 124–129. [CrossRef] [Google Scholar]
  3. A. Antenucci, S. Guarino, V. Tagliaferri, N. Ucciardello, Electro-deposition of graphene on aluminium open cell metal foams, Mater. Des. 71 (2015) 78–84. [CrossRef] [Google Scholar]
  4. C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites, Chem. Commun. 7 (2005) 829–841. [CrossRef] [Google Scholar]
  5. D. Chen, Q. Wang, J. Jin, P. Wu, H. Wang, S. Yu, H. Zhang, C.X. Cai, Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes, Anal. Chem. 52 (2010) 2448. [CrossRef] [Google Scholar]
  6. L.N. Wu, X.J. Zhang, H.X. Ju, Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential, Anal. Chem. 79 (2007) 453. [CrossRef] [Google Scholar]
  7. M. Zhou, J. Ding, L.P. Guo, Q.K. Shang, Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode, Anal. Chem. 79 (2007) 5328. [CrossRef] [Google Scholar]
  8. M. Zhou, J.D. Guo, L.P. Guo, J. Bai, Electrochemical sensing platform based on the highly ordered mosoporous carbon-fullerene system, Anal. Chem. 80 (2008) 4642. [CrossRef] [Google Scholar]
  9. H. Yaojuan, J. Juan, W. Ping, Z. Hui, C. Chenxin, Graphene – gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation, Electrochimica Acta 56 (2010) 491–500. [CrossRef] [Google Scholar]
  10. P.G. Klemens, Theory of the A-plane thermal conductivity of graphite, J. Wide Bandgap Mater. 7 (2000) 332–339. [CrossRef] [Google Scholar]
  11. H.O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, Noyes Publications, Park Ridge, NJ, 2010. [Google Scholar]
  12. C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements: a comprehensive review, J. Phys. Chem. Ref. Data 3 (1974) 1–30. [CrossRef] [Google Scholar]
  13. A.A. Balandin et al., Superior thermal conductivity of single layer graphene, Nano Lett. 8 (2008) 902–907. [CrossRef] [PubMed] [Google Scholar]
  14. S. Ghosh et al., Extremely high thermal conductivity in graphene: prospects for thermal management application in nanoelectronic circuits, Appl. Phys. Lett. 92 (2008) 151911. [CrossRef] [Google Scholar]
  15. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers, Nano Lett. 7 (2007) 2645–2649. [Google Scholar]
  16. S. Ghosh et al., Thermal properties of polycrystalline graphene films and reduced graphene-oxide films, MRS Proc. 2 (2010) 198. [Google Scholar]
  17. K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. [CrossRef] [PubMed] [Google Scholar]
  18. K.P. Loh, Q. Bao, P.K. Ang, J.X. Yang, The chemistry of graphene, Mater. Chem. 20 (2010) 1. [CrossRef] [Google Scholar]
  19. D. Wei, Y. Liu, H. Zhang, L. Huang, B. Wu, J. Chen, G. Yu, Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches, J. Am. Chem. Soc. 131 (2009) 11147. [CrossRef] [PubMed] [Google Scholar]
  20. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498. [CrossRef] [PubMed] [Google Scholar]
  21. K. Kim, H.J. Park, B.C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Electric property evolution of structurally defected multilayer graphene, Nano Lett. 8 (2008) 3092. [CrossRef] [Google Scholar]
  22. C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385. [CrossRef] [PubMed] [Google Scholar]
  23. C. Xu, X. Wang, J.W. Zhu, Graphene-metal particle nanocomposites, J. Phys. Chem. 112 (2008) 19841. [Google Scholar]
  24. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano 3 (2009) 907. [CrossRef] [Google Scholar]
  25. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors, J. Chem. Sci. 120 (2008) 9. [CrossRef] [Google Scholar]
  26. Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors, Nano Lett. 9 (2009) 2973. [CrossRef] [Google Scholar]
  27. Y.J. Hu, J. Jin, H. Zhang, P. Wu, C.X. Cai, Graphene: synthesis, functionalization and applications in chemistry, Acta Phys.: Chim. Sin. 26 (2010) 2073. [Google Scholar]
  28. S. Stankovich et al., Graphene-based composite materials, Nature 442 (2006) 282. [CrossRef] [PubMed] [Google Scholar]
  29. C. Mattevi, H. Kima, M. Chhowalla, A review of chemical vapor deposition of graphene on copper, J. Mater. Chem. 21 (2011) 3324–3334. [CrossRef] [Google Scholar]
  30. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2009) 30–35. [Google Scholar]
  31. O. Frank, M. Kalbac, Chemical vapor deposition (CVD) growth of graphene films, in: V. Skakalova, A. Kaiser (Eds.), Graphene, Woodhead Publishing, 2014, pp. 27–49. [CrossRef] [Google Scholar]
  32. L.A. Razak, D. Tobino, K. Ueno, Improvement of multilayer graphene quality by current stress during thermal CVD, Microelectron. Eng. 120 (2014) 200–204. [CrossRef] [Google Scholar]
  33. J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates, ACS Nano 5 (2011) 6916–6924. [CrossRef] [PubMed] [Google Scholar]
  34. K. Boomsma, D. Poulikakos, F. Zwick, Metal foams as compact high performance heat exchangers, Mech. Mater. 35 (2003) 1161–1176. [CrossRef] [Google Scholar]
  35. W.J. Parker, R.J. Jenkins et al., A flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, U.S. Navy Report USNRDL-TR-424, 1960. [Google Scholar]
  36. P.G. Klemens, D.F. Pedraza, Thermal conductivity of graphite in basal plane, Carbon 32 (1994) 735–741. [CrossRef] [Google Scholar]
  37. P.G. Klemens, Theory of thermal conduction in the ceramic films, Int. J. Thermophys. 22 (2001) 265–275. [CrossRef] [Google Scholar]
  38. L.A. Jauregui et al., Thermal transport in graphene nanostructures: experiments and simulations, ECS Trans. 28 (2010) 73–83. [CrossRef] [Google Scholar]
  39. P.L. Kapitza, Collected Papers of P. L. Kapitza Vol. II, in: D. ter Haar (Ed.), Pergamon Press, Oxford, 1967, p. 581 [Google Scholar]
  40. Y.K. Koh, M.H. Bae, D.G. Cahill, E. Pop, Heat conduction across monolayer and few-layer graphenes, Nano Lett. 10 (2010) 4363–4368. [CrossRef] [Google Scholar]
  41. A.J. Schmidt, K.C. Collins, A.J. Minnich, G. Chen, Thermal conductance and phonon transmissivity of metal-graphite interfaces, J. Appl. Phys. 107 (2010) 1–5. [Google Scholar]
  42. M.A. Raza, A. Westwood, A. Brown, N. Hondow, C. Stirling, Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications, Carbon 49 (2011) 4269–4279. [CrossRef] [Google Scholar]
  43. S. Ghosh et al., Dimensional crossover of thermal transport in few-layer graphene, Nature Mater. 9 (2010) 555–558. [CrossRef] [PubMed] [Google Scholar]
  44. W.R. Zhong, M.P. Zhang, B.Q. Ai, D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study, Appl. Phys. Lett. 98 (2011) 113107. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.